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Summary 

Given the high frequency of accidents that occur on icy roads at night, 

it would be beneficial to alert road managers and drivers about the most 

hazardous locations. The present study examined well-established 

prediction techniques such as deep neural network (DNN), random forest 

(RF), and support vector machine (SVM), with the aim of predicting frost-

induced night icing on four different bridges on the National Highways in 

Korea using atmospheric data. The input data for the models consisted of 

relative humidity, air temperature, dew point temperature, and the 

differences in air temperature and humidity between two consecutive days. 

As a result, DNN and RF performed equally well with an accuracy of 95%, 

followed by SVM with an accuracy of 92.5%. Given the growing emphasis 

on preventive maintenance, these developed forecasting models can be 

applied proactively as an anti-icing measure, ultimately enhancing traffic 

safety on winter roads. 
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INTRODUCTION 

 

Numerous traffic collisions take place on slick roadways. A study 

reveals that in the United States, accidents on slippery roads result in 1,300 

fatalities and 13,735 injuries every year [1]. A Swedish report stated that a 

mere 14% of motorists effectively speed up and slow down when driving on 

slippery surfaces [2]. Research from Portugal suggests that the likelihood of 

a crash on icy roads is nine to ten times higher than on dry surfaces [3]. 

Based on data from South Korea, 198 deaths have resulted from 6,502 

incidents on slippery roads over a five-year period. In 2019, South Korea 

experienced a devastating accident on an icy road caused by freezing rain, 

which led to seven fatalities and numerous injuries; a similar event occurred 

again in 2022.  

Also, Korean government directed road maintenance organizations to 

measure pavement temperatures during nighttime road maintenance 

patrols, using these measurements as a basis for anti-icing efforts [4]. Since 

atmospheric sensors are often located far from roads, road temperatures 

cannot be dependably monitored. Additionally, significant fluctuations in 

surface temperatures, even on short segments of roadways, limit the 

usefulness of atmospheric temperature data for anti-icing measures [5]. 

Consequently, continuous measurement of pavement temperatures along 

roadways is essential for successful anti-icing operations against black ice. 

Typically, snow removal is carried out based on weather forecasts, 

meaning snow plows are used to clear snow and/or spread chemicals during 

or just before (1-3 hours) snowfall. However, due to the lack of black ice 

forecasts in Korea, maintenance staff must perform daily patrols along roads, 

placing a considerable burden on them.  

To tackle this issue, this study developed black ice forecasting models 

to improve the efficiency of anti-icing efforts, particularly for frost-caused 

black ice. Three widely recognized machine learning algorithms - deep 
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neural network (DNN), random forest (RF), and support vector machine 

(SVM) - were explored using atmospheric. With these forecasting models, 

nighttime black ice can be predicted using daytime weather forecasts, 

allowing maintenance personnel to carry out anti-icing activities (patrolling 

and applying chemicals) only when black ice is anticipated.  

 

 
METHOD 

 

Methods in Previous Studies 

 

Black ice can form due to various reasons [6], including the freezing 

of melted snow overnight, rain that freezes on negatively-tempered 

pavement, and frost bonding with the road surface. The first two causes can 

be predicted with atmospheric weather forecasting since they are caused by 

snow or rain. However, the last cause can only be detected through regular 

road maintenance patrols [7]. 

To predict black ice, physical models and regression analysis have 

primarily been used. Physical models use a surface energy balance model 

based on heat conduction, convection, radiation, and vapor movement 

estimates to predict pavement temperature [8-11]. Regression models 

predict pavement temperature using different data, such as atmospheric 

data, geometry, and air temperature from probe cars [12-14]. However, both 

types of models have limitations. Physical models require hard data, such as 

pavement thickness, heat transfer rate of pavement material, and heat flux, 

which are not always obtainable, indicating that atmospheric data and 

pavement temperature alone cannot effectively forecast black ice. 

Regression models are relatively simple to understand but struggle with 

predicting variables that have a non-linear correlation. Thus, three machine 

learning models including DNN, RF, and SVM were utilized for this study to 

overcome the limitations of the previous methods. 
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Baseline Data Generation for Evaluating Estimated Black Ice 

Information 

 

In order to evaluate the accuracy of the predicted black ice 

information, baseline data is necessary. While using a reference device to 

measure road surface status would be the most reliable and straightforward 

method, it was not practical for this particular study due to the associated 

labor requirements, cost, and the need to acquire the device. Instead, a 

physical principle expressed in equation (1) was used, which states that frost 

on a pavement forms when the pavement temperature is not only negative, 

but also lower than the dew point.  

𝑇𝑝 ≤ 0℃ 𝑎𝑛𝑑 𝑇𝑝 ≤ 𝑇𝑑    (1) 

where Tp = pavement temperature and Td = dew point temperature. 

The dew point temperature refers to the temperature at which vapor 

becomes saturated, leading to the formation of fog or frost and causing the 

relative humidity to reach 100%. The calculation of the dew point 

temperature is often done using the Magnus formula, which is a widely used 

method for this purpose [15]. The formula calculates the saturation vapor 

pressure (EW) over liquid water at a specific temperature (T) using equation 

(2). 

𝐸𝑊 = 𝛼 ∙ 𝑒(
𝛽∙𝑇

𝜆+𝑇
)
     (2) 

Equation (2) involves the use of parameters α (6.112 hPa), β (17.62), 

and λ (243.12℃). By rearranging the terms in equation (2), the dew point 

(Td) can be expressed as equation (3) in terms of vapor pressure. 

𝑇𝑑 =
𝜆∙ln (

𝐸

𝛼
)

𝛽−𝑙𝑛(
𝐸

𝛼
)
     (3) 

If we substitute the definition of relative humidity (E = RH*EW/100) into 

equation (3), we can obtain the dew point (Td) using both atmospheric 

temperature (T) and relative humidity (RH), as shown in equation (4). 
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𝑇𝑑(𝑇, 𝑅𝐻) =
𝜆∙[ln(

𝑅𝐻

100
)+

𝛽∙𝑇

𝜆+𝑇
]

𝛽−[𝑙𝑛(
𝑅𝐻

100
)+

𝛽∙𝑇

𝜆+𝑇
]
    (4) 

Equations (2)-(4) utilize the Magnus formula, which is widely accepted 

as a method to estimate the dew point temperature based on the 

atmospheric temperature and relative humidity, with an error rate of around 

0.35℃ [16].  

In order to verify the accuracy of the Magnus formula, a wintertime 

road segment was patrolled. The observation was made that frost-induced 

black ice occurred (on the left) when the conditions for frost formation were 

met, while no black ice was observed (on the right) when those conditions 

were not met, as illustrated in Figure 1. 

 

 
Figure 1 Pavement with frost (left) and without frost (right). 

DATA 

 

Data Collection 

 

Pavement Temperature and Atmospheric Data 

 

For this study, road maintenance vehicles are equipped with a road 

surface temperature sensor (Figure 2) that uses an infrared thermometer to 

measure the temperature of the pavement (Figure 3). The sensor can 

measure the temperature every 0.2 seconds while the vehicle is in motion. 

The sensor has a very narrow half-angle of 5°, which makes it highly 
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accurate when measuring surface temperature [17]. The sensor has an 

accuracy of ±0.3℃ at 0℃. Also, corresponding atmospheric data at the same 

time were obtained from the nearest weather station. 

 

Figure 2 Pavement temperature sensor. 

 

 
Figure 3 Data collection sites. 

Data collection 

points (bridges)
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Preprocessing of Pavement Temperature Data 

 

To apply the collected data effectively to de-icing activities, it was 

necessary to aggregate the data by roadway segment. To accomplish this, 

the Korean government established a standard node-link system (Figure 4), 

which divides the entire public highway network into nodes and links based 

on roadway features such as bridge, tunnel, overpass, underpass, 

intersection, number of lanes, etc. Since the pavement temperature varies 

by roadway type, aggregation by the node-link system is considered to be 

reasonable and effective.  

 

Figure 4 Standard node-link system of Korea. 

 

To process the pavement temperature, a standard link was used to 

aggregate the data into a single median value as a measure of central 

tendency. However, since pavement temperature measurements collected 

from moving vehicles may contain outliers due to various factors like debris 

on the pavement, driving on the shoulder lane, intermittent stops during 

patrolling, etc., a prudent aggregation method was required to mitigate any 

unexpected consequences caused by these outliers. Among the three 

measures of central tendency (mean, median, and mode), the median was 

selected because it is less susceptible to outlying observations [18-20]. 
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Relationship between Pavement Temperature and Atmospheric Data 
 

<Figure 5> shows a graph of the pavement temperature and air 

temperature collected at one of the three points mentioned above. Similar 

patterns were observed at the other two points. Overall, the bridge 

temperature was observed to be lower than the air temperature, and the 

variability was observed to be greater in the air temperature. As shown in 

<Table 1> and <Figure 6>, the average temperature was about 2 ℃ lower 

for the bridge temperature compared to the air temperature, but the 

maximum temperature was about 4 ℃ higher. The minimum temperature 

was about 2 ℃ lower for the air temperature compared to the pavement 

temperature. Unlike the air temperature, which fluctuates significantly with 

air flow, the pavement temperature is thought to have relatively low variability 

due to geothermal and latent heat of the structure. 

 
Figure 5 Air temperature vs. pavement temperature. 

 

Table 1 Statistics of pavement (bridge) and air temperature 

Statistics Air tem. Pav. (Bridge) temp. 

Mean -0.30 -2.47 

Standard deviation 5.56 5.01 

Minimum -16.00 -14.30 

25 % -3.00 -5.93 

50 % -1.00 -3.15 

75 % 3.00 0.73 

Maximum 12.00 7.90 
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Figure 6 Boxplot of air and pavement temperature. 

 

<Figure 7> shows the temperature and humidity characteristics during 

frost formation. The point indicated by the round points in red in <Figure 7 

(b)> is when frost formation occurs according to equation (1) (when the 

pavement temperature is below freezing and lower than the dew point 

temperature). Examining the temperature and humidity patterns in <Figure 7 

(a)> during frost formation, it can be seen that in most cases, temperature 

and humidity rise simultaneously. Additionally, it can be seen that even if the 

air temperature is above freezing, frost can occur when the pavement 

temperature is lower than the freezing point of 0 ℃. The temperature 

difference between the air temperature and bridge temperature was 

observed to be up to 4 degrees. From the analysis conducted, it can be 

deduced that during winter, frost is more likely to form when temperatures 

are increasing rather than decreasing, as long as the pavement temperature 

remains below 0 ℃. 
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(a) Air temperature vs. relative humidity 

 
(b) Dew point temperature vs. pavement temperature 

Figure 7 Cases of frost-induced black ice formation. 

 

 

 

BLACK ICE PREDICTION 

 

Building Blocks of Machine Learning Models 

 

Based on the above-investigated results, we developed a nighttime 

black ice prediction model using atmospheric data. The input data for the 

machine learning models consisted of temperature, humidity, temperature 

difference from the previous and following days, humidity difference from the 

previous and following days, and dew point temperature, which were 

collected over a two-year period at the three points mentioned earlier. The 

baseline data were generated using equations (1-4) with the input data and 

pavement temperature data collected by patrol vehicles. We employed three 

well-known prediction models, namely DNN, RF, and SVM, which are known 
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to have generally superior performance. <Figure 8> depicts the building 

blocks for the three models. Since the scale of each input data was different, 

we standardized the data using a standard scaler before training the models. 

The training and test sets were classified into a 7:3 ratio, and the dry/icing 

data ratios of the raw data were applied during classification to ensure a 

balanced distribution in both sets. The total data used for analysis consisted 

of 397 days, including 193 days of icy and 204 days of dry conditions. 

 

 
Figure 8 Building blocks of machine learning models. 

 

Deep Neural Network 

 

The DNN model was built using the Tensorflow Keras platform. As 

shown in <Table 2>, the model had a 30x20 hidden layer and a total of 821 

parameters. The optimal number of hidden layers was determined with error-

and-trial process [21]. The rectified linear unit activation function was used, 

and the Adam optimizer was applied with 50 epochs. <Figure 9> shows the 

training process of the built model, using accuracy as the evaluation metric. 

As shown in <Table 3>, the predicted results of the model demonstrated 

overall satisfactory performance, with a particularly notable 100% prediction 

rate for icing conditions. Thus, the performance of the model was deemed 

satisfactory." 

Machine Learning

 Deep Nueral Network
 Random Forest
 Support Vector Machine

Input 1

Air temp.

Input 2

Humidity

Input 3

Dew point

Input 4

Air temp. diff.

Input 5

Humi. diff.

Output

Frost/Non-frost
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Table 2 Constructed deep neural network model 

Layer (type)                Output Shape              Param #    

========================================= 

dense     (Dense)             (None, 30)                180        

dense_1 (Dense)             (None, 20)                620        

dense_2 (Dense)             (None, 1)                 21                                                                          

========================================= 

Total params: 821 

Trainable params: 821 

Non-trainable params: 0 

 

 
Figure 9 Learning process of deep neural network model. 

 

Table 3 Confusion matrix of deep neural network model 

 

 
 
 
 

 
 
Random Forest 
 

The Random Forest model was constructed using the Python 

language. Random Forest is a prediction model that averages multiple 

decision trees, so it is crucial to determine the optimal number of decision 

trees. To achieve this, while keeping other parameters fixed at constant 

Classification 
Prediction 

Dry Icy 

Baseline 
Dry 0.919 0.081 

Icy 0.000 1.000 
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values, decision trees ranging from 1 to 50 were investigated using accuracy 

as the evaluation metric.  

 

 
Figure 10 Searching process of the optimal number of trees. 

 

Table 4 Feature importance for random forest model 

Features Humidity 
Air temp. 

diff. 
Dew point Air temp. Humi. diff. 

Gini-

Importance 
0.437 0.236 0.155 0.086 0.086 

 

Consequently, the optimal number of decision trees was determined 

to be 11, as depicted in <Figure 10>. Other parameters, excluding decision 

trees, were estimated using the "GridSearchCV" library. The resulting 

optimal parameters were determined to be {‘criterion’: entropy, ‘max_depth’: 

10, 'max_features': auto, 'max_leaf_nodes': 30, and 'n_estimators': 12}. 

Unlike other models, the RF model can calculate the importance of each 

input variable. Analyzing the widely used Gini-importance for impurity 

measurement, it can be seen from <Table 4> that humidity and air 

temperature difference between consecutive days have the highest 

importance. This is consistent with the findings in <Figure 7>. As seen in 

<Table 5>, the performance of the model is also excellent. 
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Table 5 Confusion matrix of random forest model 

 

 

 

 

 
 

Support Vector Machine 

 

The SVM model was also constructed using the Python language, 

similar to the RF model, and there are several parameters for model 

optimization in SVM as well. When training an SVM model, the performance 

of the model heavily depends on the parameter settings 

The optimal parameters were determined using the GridSearchCV 

library in this analysis, and the resulting values were {'C': 100, 'gamma': 

'auto', and 'kernel': 'rbf'}. <Table 6> shows the results predicted using the 

optimal parameters. Although the performance is somewhat lower than that 

of DNN and RF, the overall performance is satisfactory, with an accuracy of 

over 0.9. 

 

Table 6 Confusion matrix of support vector machine model 
 
 
 
 

 
 

 
 
DISCUSSIONS 
 

<Table 7> is a comparison table for three different models. 

Performance comparison was done using accuracy, precision, recall, and F1 

score, which, as expressed in equations (5-8), are commonly used for 

evaluating machine learning models. DNN and RF showed the same 

Classification 
Prediction 

Dry Icy 

Baseline 
Dry 0.935 0.065 

Icy 0.034 0.966 

Classification 
Prediction 

Dry Icy 

Baseline 
Dry 0.887 0.113 

Icy 0.034 0.966 
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performance, but in the case of the F1 score, DNN was higher. Since the 

recall of DNN is 100%, there were no cases of predicting an icy surface as a 

dry surface, making it more satisfactory compared to other models. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒
    (7) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

      (8) 

 

Table 7 Model performance comparison 

Model Accuracy Precison Recall F1 score 

DNN 0.950 0.906 1.000 0.951  

RF 0.950 0.933 0.966 0.949 

SVM 0.925 0.889 0.966 0.926 

 

 

It should be noted that the baseline data used in this analysis is not 

the actual surface condition observed in the field, but rather calculated values 

using road surface temperature and atmospheric data. Even if the conditions 

for frost formation are met according to physical laws, road icing may not 

occur in cases of high traffic volume [22]. Nevertheless, the results of this 

study can be highly valued from the following perspectives. From the 

viewpoint of road administrators, if icing due to frost is expected, they should 

perform anti-icing activities. In this regard, the results of this study can be 

usefully applied to real-world winter road maintenance activities. 

 
 
CONCLUSIONS AND FUTURE STUDIES 

 

In Korea, as previously stated, accidents caused by black ice 

(resulting in seven fatalities in 2019 and numerous injuries in 2023) have led 
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to significant changes in winter road maintenance practices. Recently, field 

workers have been tasked with daily maintenance patrols throughout the 

winter season. As a result, field personnel have been requesting an improved 

patrolling schedule, highlighting the need for the development of nighttime 

ice predictions. 

For snow removal, field personnel can rely on atmospheric weather 

forecasts, but no such predictive information is available for black ice 

treatment. Consequently, workers are often compelled to carry out 

maintenance patrols, even when black ice is not expected. To tackle this 

issue, three reputable machine learning models were explored to predict 

nighttime black ice potential, achieving satisfactory results with accuracies 

above 92%. 

Nonetheless, the deep learning models created were evaluated solely 

based on baseline data derived from a physical principle. In the future, if 

feasible, baseline data should be gathered from field observations using a 

device that accurately measures road slipperiness to ensure a more 

dependable evaluation. 
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