

Lars Forslöf, Project manager - Trafikverket

WRIP - Winter Road Intelligence Project

WRIP - Winter Road Intelligence Project

- The project is focusing on providing road network surface state data.
- This mean to assemble and merge data from:
 - mobile systems
 - ordinary RWiS
 - IOT-devices
 - weather and road state forecasts
- and how to best publish them in standardized services.
- facilitate for providers of decision support and traffic information/management systems to consume this data

Statens vegvesen

Finnish Transport Infrastructure Agency TRAFIKVERKET

Vejdirektoratet Vegagerðin

WRIP - Workpackages

Content	Country responsible	2022	2023	2024	2025			
Project management	Sweden	Definition phase Planning phase	Co-ordinate WPs Monthly meetings	Coordinate WPs Present at conferences	Closing phase			
WP1: RWIS IOT demoTest installationsPublish results	Sweden	Study market	Procure Install Test/Demo	Finish tests Analyze results Publish WP report				
 WP2: Mobile demos Plan, arrange and follow up mobile survey solutions 	Norway Iceland	Preliminiary planning	Detailed planning Market co-ordination Practial arranges	Communicate Execute demos Communicate Concluding tests				
WP3: Data processingStandards/interfaces	Finland		Plan and initiate Investigate/Clarify	Continue work Gather findings Publish report	Summarizing Final report			
 WP4: Data consumption Decision support Forecasts/prognosis Traffic info/management 	Denmark		Plan and initiiate	Arrange Workshop Testing excixting MDSS in Nordic countries Publish report				

WP1 - 9 companies x 2 test sites - IOT "weather stations"

Company	Country
Snower Oy	Finland
Volue	Norway
Campbell Scientific	UK
Decentlab GmbH	Switzerland
Vaisala Oy	Finland
Tectal	Norway
Mowic AB	Sweden
Klimator AB	Sweden
Cordulus/Fieldsense	Denmark
Edeva	Sweden

W/Vegagerðin

20240101 - 20240108

WP1 – Migrate and evaluate data

Statens vegvese

Report is avaliable!

Vejdirektoratet Vegagerðin

Data vs. reference station

	KIRUNA	CAMPBELL	DECENTLAB	MOWIC	SCANMATIC	CORDULUS	EDEVA	KLIMATOR	VAISALA	SNOWER
	AIR TEMP R ²	0,99	1,00	0,98	0,99	0,98	0,97	0,99	0,99	0,97
	HUMIDITY R ²	0,88	0,81	0,76	0,35	0,67	0,67	0,75	0,80	0,52
	SURFACE TEMP R ²	0,99	0,87	0,99	0,92	1,00	*	*	0,93	0,86
	AVERAGE :	°,95	0,89	0,91	o,75	o,88	*	*	0,91	0,78
	SAGÅN									
	AIR TEMP R ²	0,99	1,00	1,0	0,99	0,99	0,94	1,00	1,00	0,98
	HUMIDITY R ²	0,91	0,94	0,97	0,69	0,89	0,66	0,94	0,92	0,84
) 2 _	SURFACE TEMP R ²	0,97	0,96	1,0	0,97	1,0	*	0,99	0,99	0,95
۲ ²	AVERAGE :	0,96	°,97	0,99	o,88	0,96	*	0,98	0,97	0,92
nod	ata									

Vejdirektoratet Vegagerðin

Data availability, based on all 30 periods over the whole period

KIRUNA	REF. STATION VAISALA MS7	CAMPBELL	DECENTLAB	MOWIC	SCANMATIC	CORDULUS	EDEVA	KLIMATOR	VAISALA	SNOWER
AIR TEMP:	100	95,4	99,8	87,6	96,7	91,5	88,3	99,5	96,6	100
HUMIDITY:	100	95,4	99,8	87,6	97,0	91,5	88,3	99,5	96,6	99,9
SURFACE TEMP:	100	95,5	99,8	95,4	96,7	91,5	*	93,3	93,9	100
AVERAGE :	100	95,4	99,8	90,2	96,8	9 1 ,5	88,3*	97,4	95,7	100
SAGÅN										
AIR TEMP:	100	100	100	96,5	96	77,8	30,5	99,5	95,44	99
HUMIDITY:	100	100	100	96,5	96	77,8	30,5	99,5	95,44	58,5
SURFACE TEMP:	100	100	100	96,5	96	44,7	*	99,5	57,7	73,1
AVERAGE :	100	100	100	96,5	96	66,8	30,5*	99,5	82,86	76,9
o data										

*

WP1 – Result

- IOT equipments are here to stay! ٠
 - They can add values but implementation have concerns...
- General performance ٠
 - Most systems manage *air temperature* in a good way _
 - Variation on *air humidity* an important parameter! _
 - Some systems are *acceptable* some show a *poor performance*
- Formats of data ٠
 - Lots of work to migrate/integrate = clear need to standardize API:s and formats _
 - Suppliers like to have client to be kept in their systems
- Data communication is an issue ٠
 - Systems need to operate off grid (they cant require grid powered data communication!) _
 - Bad communication drain batteries fatal on invasive sensors
- Road status and Cameras yet to be analyzed. ٠

WP2 - 6 companies on 2 test sites, FCD+mobile survey systems

Floating Car Data: Klimator, Nira Dynamics, Testnor

WP2 test sites

Data providers: Nira Dynamics, Vaisala, Teconer

Data delivery from all 6 companies

Test campaign in Bodø

March 1st 2024

Test campaign

road state examples

Optical sensors, measuring range marked with orange

ViaFriction value 0.296 within the red square

Friction values:

- ViaFriction = 0.30
- μ Smart = 0.36
- **MD30** = 0.62
- **RCM511** = 0.31

Category for road state:

- ✤ µSmart road state: Snow
- ✤ MD30, road state: Wet
- RCM511, road state: Snow

WP2 – Summary / preliminary results

- Data collection periods
 - December 2023 March 2024
 - December 2024 January 2025
- Floating car data
 - Downloaded data for the first winter period, but not anlyzed yet
 - Proprietary solutions, cumbersome data download routine
 - Need for standardization and specification of requirements for data delivery
 - Preliminary results is that geographically coverage is low in rural areas, but could be satisfying in cities.
 - Dialogue with the industry is important, and there is no goal to choose a winner
- Optical sensors
 - Only three types of optical sensors are included in the pilot
 - Test campaign indicate that there are variations both in relation to the friction estimate and the categorization of driving conditions

Concluding remarks on WRIP

- Valuable Nordic cooperation and knowledge sharing
- Promising part time results
- WP1 is finished
 - There is a variation in performance for different systems
 - Continuous data is an issue for some IoT systems
 - Humidity is a challenge
- WP2, WP3 and WP4 continue
- Data exchange is a general problem. APIs not arranged for automatic data collection
- Need for standardization

