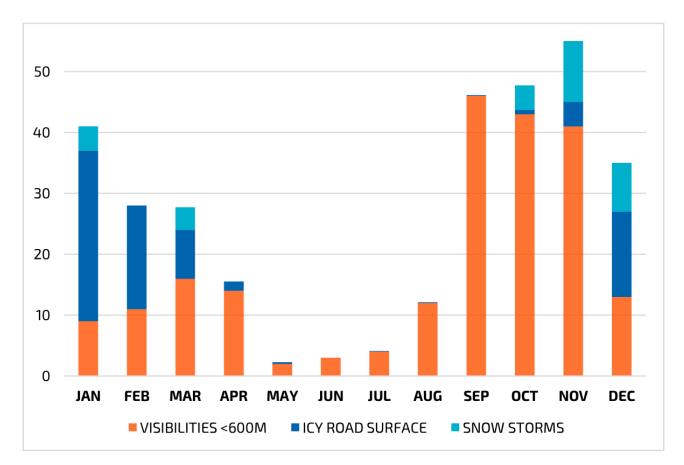

1ATIETEEN LAITOS TEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

WEATHER SERVICE TO SUPPORT AUTONOMOUS DRIVING IN ADVERSE WEATHER CONDITIONS

Marjo Hippi, Timo Sukuvaara, Kari Mäenpää and Toni Perälä Finnish Meteorological Institute, Helsinki, Finland marjo.hippi@fmi.fi

Adverse winter weather conditions



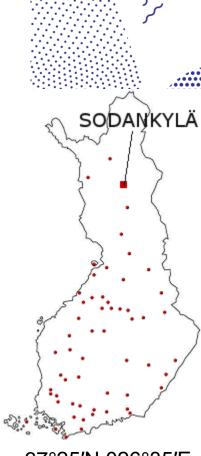
Slipperiness Darkness Snowfall Freezing rain Fog

Total hours of adverse weather conditions causing the most challenges for the AVs in Finland

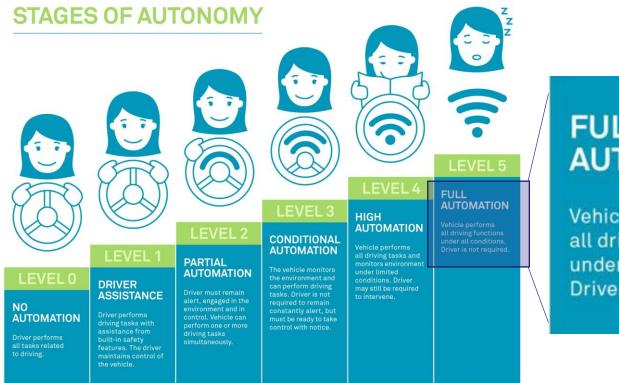
Helsinki-Tampere motorway 15 RWS's, 10 year data

Source: Automated Driving on Motorways (AUTOMOTO) - Study of Infrastructure Support and Classification for Automated Driving on Finnish Motorways. Finnish Transport Infrastructure Agency. Helsinki 2021. FTIA publications 21/2021.

Test track in Sodankylä, North Finland



MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET INNISH METEOROLOGICAL INSTITUTE

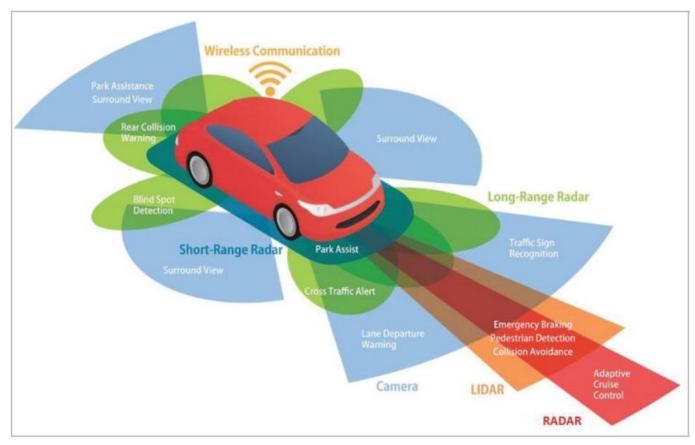


Miniature vehicle

Levels of automous driving

Source: https://blog.novatel.com/functional-safety-for-autonomous-vehicles/

FULL AUTOMATION


Vehicle performs all driving functions under all conditions. Driver is not required. Question:

How about driving in winter when there is heavy snowfall and slippery road condition? Is full automation mode

possible in those weather situations?

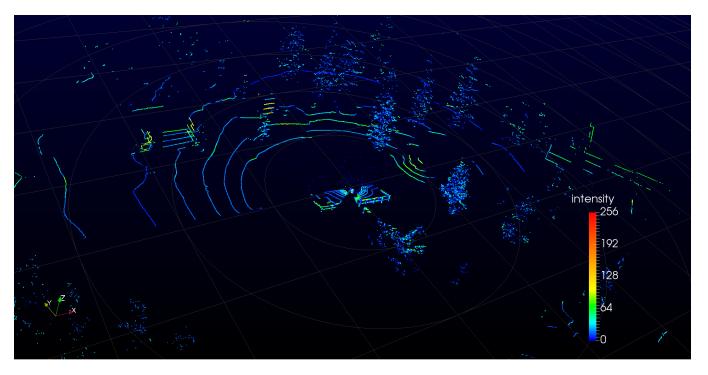
Answer: Mayby not (at least now)

Wireless communication and sensors in self-driving cars

Source: Pisarov and Mester: The Future of Autonomous Vehicles, 2020. DOI: 10.5937/fme2101029P

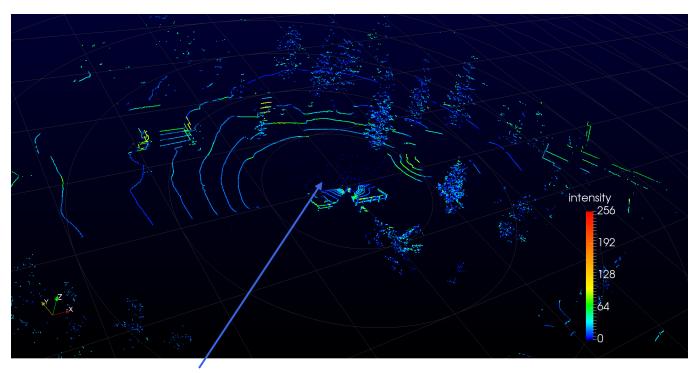
ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE Autonomous driving is strongly dependent of several sensors (camera, lidar, radar) detecting the driving circumstances (obstacles, edge line etc) and wireless communication systems

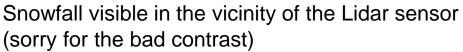
Device	Detection range	Object detection accuracy	Vulnerability to		
			Rain	Snow	Dark
Video camera *	>100m *	Mod.	Low	High	Low
Lidar, Velodyne PUCK/ VLP16	>100m	Very high	Mod	Mod	Null
Vehicle radar, Continental SRR 308	>80m	High	Low	Mod	Null
GNSS RTK	Ø	Null	Null	Null	Null
Friction, Teconer RWS 431	Spot	Null	Low	Low	Null
ITS services via ITS- G5/5G transceiver	Transm. Delay	Source specific	Null	Null	Null



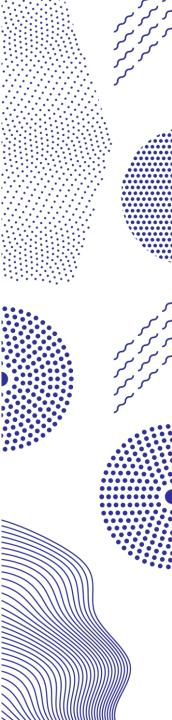
* image resolution limited due to real-time interpretation

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET INNISH METEOROLOGICAL INSTITUTE

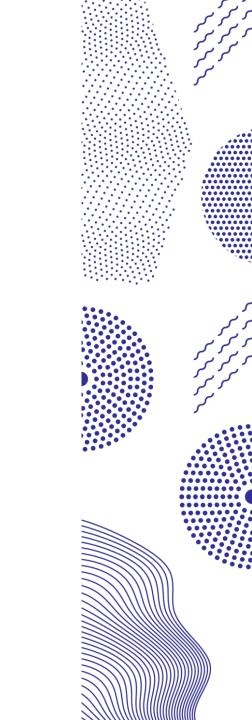

Lidar vs. photography



Lidar vs. photography



Concept model of weather-based step-wise autonomous driving mode


	Autonomous driving mode specifics	Road weather and driving conditions	Effect to sensors
0 Error	Must stop / No autonomous driving	Not defined	Unknown location or other error
1 Normal	No need to adjust speed nor driving	Fair weather. Good visibility and dry surface	-
2	Anticipate braking events by lowering speed, increase safety distance	Minor rain or snow / light snowdrift / light fog. Fairly good visibility and friction.	Lidar not detecting completely, camera detecting poorly
3 Difficult	Halve the speed, increase safety distance	Moderate rain or snow / moderate snowdrift / light or dense fog. Reduced visibility or friction.	Lidar not detecting completely, camera not detecting
4	Minimum speed, prepare to stop	Heavy rain or snow / high snowdrift / freezing rain / dense fog. Reduced visibility or friction.	Lidar not detecting completely, camera not detecting, radar not detecting completely, ice and snow on the sensors
5 Very difficult	Must stop / No autonomous driving	Heavy rain or snow / moderate or long lasting freezing rain / heavy fog. Very low visibility or friction.	Lidar and camera not detecting, radar detecting poorly, ice and snow on the sensors

- The driving mode system increases road safety by giving information about reduced driving conditions (friction or visibility).
- Speed and safety distances can be adjusted to enable safety driving
- The service is tested in Sodakylä, North Finland

Next steps

- More detailed driving mode classification
- Determine the local driving conditions using
 - LiDAR data (precipitation intensity/form)
 - Vehicle camera

LMATIETEEN LAITOS 1ETEOROLOGISKA INSTITUTET 'INNISH METEOROLOGICAL INSTITUTE

Thank you for your attention!

marjo.hippi@fmi.fi Finnish Meteorological Institute