

Mobile observations in winter decision making

Jim McCaa Vaisala, Inc.

Percent of agencies collecting real-time field data from maintenance vehicles continues to increase

- Over 80% of U.S. respondents collect realtime data from their fleet
- Type of Data (ordered most to least):
 - Plow status and material usage data
 - Road weather conditions data
 - Atmospheric weather data
 - Images/videos from dashboard cameras

Source: RWMP Performance Measurement Study

Slide courtesy Tony Coventry, FHWA

Equipment placement in vehicle

MD30 sensor behind the bumper

Phone in the cab

Data from single drive

VAISALA

Data from concurrent drives

VAISALA

Benefits for Operators

Benefits for Supervisors

- Current Road Data
 - Level of Grip,
 - Surface Temperature
 - Air Temperature
 - Pavement Surface State, Snow and Ice Layer Thickness
- No need to radio in data
- Better decisions on application rates

- Near real-time grip displayed on map
- Check Each Route on Map
- Plows utilized more efficiently
- Verification of citizen claims
- Differences between routes easy to see

List courtesy of Larry Schneider, City of Fort Collins

Forecast uncertainty with no local observations

 In the absence of observations, forecast error is large but grows slowly over time

Forecast uncertainty with local observations

- Remainder of forecast is affected
- Uncertainty reduced to near obs uncertainty but slowly returns to original levels

Methodology

- 10 road segments chosen for analysis
 - Far from RWIS stations
- Spread across the city
- On regular plow routes
- Each segment 200m in length
- Forecast system has ingested both surface temperature and moisture data from mobile sensors for the past two winters
- Initial reduction forecast error estimated by evaluating the adjustment made when no observations taken in previous 24 hours
- Persistance of forecast improvement estimated by evaluating the adjustment made when new observations taken within the subsequent 24 hours

Selection of road segments

VAISALA

Results (surface temperature)

VAIS

Green bar shows mean initial reduction in error from first obs after gap of at least 24 hours

Results (snow liquid water equivalent)

VAIS

Binary classification of snow on road

	Observed Snow	No observed snow
Forecast Snow	318	115
No Forecast Snow	107	257

- Confusion matrix for measurements with no recent observations
- Snow was observed more than 50% of the time!
- Highlights the benefits and perils of mounting remote sensors only on plows
- F1 Score of 0.74 shows raw model is skillful but can be improved with observations

Conclusions

- Temperature and moisture observations from mobile sensing devices show a positive impact on forecasts in this limited study
- For surface temperature, reduction of forecast error persists for 6-12 hours, but is most pronounced in the first couple hours after an observation
- For snow (and liquid and ice), there is an initial reduction in forecast error after observations are ingested, but it is difficult to quantify
- More data needed! Mounting on service vehicles, transit, etc would be good.

