

Developing probabilistic surface transport forecasts at the Met Office

Joe Eyles

SIRWEC 2022

www.metoffice.gov.uk

Introduction

- The Met Office is the UK's national meteorological service
- Part of UK government, also a trading fund

- We provide commercial weather and climate services to business and industry
 - One of these is Surface Transport Forecasting, giving data to key decision makers, ranging from national highways to independent gritting.

Weather is hard to forecast

Patchy cloud

Timing of fronts

Weather is hard to forecast

This can lead to incorrect forecasts for shortwave (SW) and longwave (LW) down.

Weather is hard to forecast

Or precipitation forecasts with incorrect timings that do not capture the variability in the rainfall.

The problem with deterministic road forecasts

Since this data drives the physics, the road forecast can be negatively impacted.

The solution? An ensemble of forecasts

- We initially use MOGREPS-UK
- Varied by perturbing initial conditions
- Each forecast is an equally likely possible future
- 3 forecasts generated each hour

The solution? An ensemble of forecasts

- We initially use MOGREPS-UK
- Varied by perturbing initial conditions
- Each forecast is an equally likely possible future
- 3 forecasts generated each hour
- 18 member lagged ensemble

The solution? An ensemble of forecasts

- We use these ensemble forecasts as inputs to our STF model
- One STF forecast per ensemble member
- More on this later

Generating probabilities through ensembles

Simple event (temp):

- Prob(RST < 273K) at midnight.
- 5 members are < 274K, 18 members in total
- 5/18, so approximately 27% chance

Generating probabilities through ensembles

Simple event (water):

- Prob(water > 0mm) at midnight.
- 1 member has > 0mm, 18 members in total
- 1/18, so approximately 6% chance

Generating probabilities through ensembles

Ice event:

- Prob(water > 0mm and RST < 273K) at midnight.
- Naively 27% and 6% gives 2% chance.
- Considering ensemble members we arrive at 0% chance.

Coherence across parameters, locations and time

• **Parameters:** Is an ice event at a given time/place possible?

"Do I need to grit this location tonight?"

- Locations: Are an ice events at multiple locations possible? *"Do I need to grit all locations?"*
- **Time:** Are ice events are multiple times possible?

"Do I need to grit today and tomorrow?"

How to use a probabilistic forecast?

 Cost of action: £70k Act or not? Cost of inaction: £150k • Chance of ice: 30% £0 £70k Do not act Act 30% 70% 70% 30% No ice No ice lce lce Expected cost: £70k £0 £21k £70k

For more, see: Using metocean forecast verification information to effectively enhance operational decision-making, Steele et al, 2021

Verification – reliability plot

Verification – rank histogram

Figures borrowed from NOAA presentation on 'Verification and visualization of ensemble forecasts' by Tom Hamill

Water depth rank histogram

Conclusion

- Deterministic weather forecasts have challenges
- These cause problems in deterministic road forecasts
- We can manage these problems with an ensemble based forecast
- This gives other advantages, such as information about the certainty of an event

