BUFR TEMPLATE FOR ROAD WEATHER DATA

Jan Sulan¹ and Thomas Endrulat²

¹Czech Hydrometeorological Institute (CHMI) Email: <u>sulan@chmi.cz</u> ²Deutscher Wetterdienst (DWD) Email: Thomas.Endrulat@dwd.de

ABSTRACT

Although RWIS-BUFR code has already been used in some countries, new version was developed in co-operation between Czech and German national meteorological services during winter season 2004–2005. This code is supposed for future cross-border exchange of road weather data via Global Telecommunication System of the World Meteorological Organization (WMO). The template and local descriptors were developed by Eva Cervena (CHMI) and Sibylle Krebber (DWD) – members of Expert Team for Data Representation and Codes (WMO) in collaboration with authors of this paper. Local descriptors enable for example description of road sensor position (fast/slow lane, between/in the wheel tracks), type of road construction, and information about surrounding of the station. In RWIS it will make it possible to distinguish stations according to different parameters, for example name of road sensor manufacturers if necessary. In accord with national plans for migration from traditional meteorological codes to BUFR, the new road weather BUFR template should be used operationally in the Central Europe during winter season 2006/2007.

Keywords: Meteorological Codes, Cross-border Exchange of Data, World Meteorological Organization

1. INTRODUCTION

Cooperation in road meteorology between DWD and CHMI was initiated in connection with "Sumava Project" (2001) concerning installation of common road weather stations near the border between Germany and the Czech Republic in the region of Sumava Mountains (Black Forest). The experts from CHMI and DWD developed SH70 code as a successor of SH10 code used in Germany in 90-ties, with aim of internal usage of data in presentation systems of DWD and CHMI. During 2004 the collection of data in SH70 in the Czech Republic has been realised and experimental cross-border exchange started in the end of winter season 2004/2005 with transmission of data via Global Telecommunication System of WMO.

The form of the SH10/SH70-code was chosen to look like the SYNOP-code, which is used internationally to exchange weather data. The data is grouped into blocks of 5 digits, certain numbers identify sections of data and groups of data containing the measured values of atmospheric parameters and road parameters. In accord with migration policy of WMO [1] to replace traditional alphanumeric codes by the table driven code BUFR (Binary Universal Form for the Representation of meteorological data), the work started with target to develop suitable template for road weather data. The second reason for choosing BUFR for representation of the road information is its ability to transmit more parameters and details about road weather station.

2. TEMPLATE

Important benefit of the proposed BUFR template is the ability to describe position of road weather station and individual sensors in detail. It is known that some manufacturers put temperature and humidity sensors into 2 m above local ground while another into 4 m. Height of wind sensors can also differentiate from case to case. In one country there can be trend to place road sensors between the wheel tracks whereas in neighbour country the sensors tend to be situated in the wheel tracks. If we intend to present road weather data from several countries in one information system [2], [3], it is important to have quality metadata with such details and to know what we can see in outputs from RWIS. This is also important in that the new European RWIS Norm probably will not standardise all details.

The template is presented in this paper without the corresponding BUFR descriptors.

Identification	
Short station or site name	CCITT IA5
(for identification of the road weather monitoring site)	(up to 5 characters)
Station or site name	CCITT IA5
	(up to 20 characters)
State / federal state identifier	CCITT IA5
	(up to 4 characters)
Highway designator	CCITT IA5
	(up to 5 characters) m, scale -2
Routes kilometer of highway	Flag table
Extended type of station Type of road	Code table
	Code table
Type of construction Year	
	Year
Month	Month
Day	Day
Hour	Hour
Minute	Minute
Latitude (high accuracy)	Degree, scale 5
Longitude (high accuracy)	Degree, scale 5
Height of station ground above mean sea level	m, scale 1
Temperature, humidity and visibility data	
Height of sensor above local ground	m, scale 2
Temperature/dry-bulb temperature	K, scale 2
Dew-point temperature	K, scale 2
Relative humidity	%
Height of sensor above local ground (= missing value)	m, scale 2
Horizontal visibility	m, scale –1
Road temperature and other data	
Replicate nine descriptors	
Delayed descriptor replication factor	numeric
Position of road sensors	Code table
Road surface temperature	K, scale 2
Replicate two descriptors	
Delayed descriptor replication factor	numeric
Depth below land surface	m, scale 2
= 0.30 m in the first replication,	in, seule 2
= e.g. 0.15 or 0.07 m in the second replication	
Road sub-surface temperature	K, scale 2
Depth below land surface (= missing value)	m, scale 2
Water film thickness	m, scale 3
Road surface condition	Code table
Precipitation data	
Time period in minutes	Minute
Intensity of phenomena	Code table
(for intensity of precipitation)	
Intensity of precipitation	kg m ⁻² s ⁻¹ , scale 4
Type of precipitation	Flag table
Fotal precipitation / total water equivalent of snow	kg m ⁻² , scale 1
Wind data	
Height of sensor above local ground	m, scale 2
Time significance (= 2 (time averaged))	Code table
Time period (= - 10 minutes)	Minute
Wind direction	Degree true

SIRWEC 2006 25th-27th March, Turin, ITALY

Wind speed	m s ⁻¹ , scale 1	
Time significance (= missing value)	(= missing value) Code table	
Maximum wind gust		
Time period in minutes	Minute	
Maximum wind gust direction	Degree true	
Maximum wind gust speed	m s ⁻¹ , scale 1	
State of functionality		
Quality information (AWS data)	Flag table	

3. CODE AND FLAG TABLES

List of manufacturers, the standard of time period 15 minutes the same as other basic table inputs were adopted from Germany being gradually adjusted.

Code figure	Name of road sensor	Bit No.	Extended type of station
0 1 2 3 4 5 6 7 -14 15	manufacturer Reserved ANT/Bosch Boschung SSI/Scan (MicKS) Vaisala Vibrometer Malling Reserved Missing value	1 2 3 4 5 All 6	Automatic Manned Event triggered Longer time period than the standard Reserved Missing value

Code figure Position of road sensors

- 0 Fast lane between the wheel tracks
- 1 Fast lane between the wheel tracks in the opposite direction
- 2 Fast lane in the wheel tracks
- 3 Fast lane in the wheel tracks in the opposite direction
- 4 Slow lane between the wheel tracks
- 5 Slow lane between the wheel tracks in the opposite direction
- 6 Slow lane in the wheel tracks
- 7 Slow lane in the wheel tracks in the opposite direction
- 8 14 Reserved
- 15 Missing value

Code figure	Type of construction	Code figure	Road surface c
0	Asphalt	0	Dry
1	Concrete	1	Moist
2	Concrete construction	2	Wet
2	Staal aindan annaturation	3	Rime

- Steel-girder construction 3
- 4 Box girder bridge
- 5 Orthotrope slab
- 6 Drain asphalt
- 7-14 Reserved
- 15 Missing value

Code figure Road surface condition

- Rime 3
- 4 Snow
- 5 Ice
- 6 Glaze
- 7
- Not dry 8-14 Reserved
- 15 Missing value

Code figure	Type of road			
0	Free track without further informat	tion		
1	Free track, embankment			
2	Free track, flat relative to surround	ings		
3	Free track, water basin(s) in vicinit	ty		
4	Free track, forest			
5	Free track, cleft			
6	Free track, on hilltop			
7	Free track, on hilltop, forest			
8	Free track, in valley			
9	Free track, in valley, forest			
10	Free track, north inclination			
11	Free track, north inclination, forest			
12	Free track, south inclination			
13	Free track, south inclination, forest			
14-19	Reserved			
20	Bridge without further information	l		
21	Bridge across a valley in a urban area			
22	Bridge across a valley with forest/meadows/fields			
23	Bridge across street/track			
24	Bridge across big river/canal			
25	Bridge across river/canal of medium size			
26	Bridge across a small stream/loading canal			
27-30	Reserved			
31	Missing value			
Bit No.	Type of precipitation	Bit No.	Type of precipitation	
1	Precipitation-unknown type	13	Small hail	
2	Liquid precipitation not freezing	14	Hail	
3	Liquid freezing precipitation	15	Glaze	
4	Drizzle	16	Rime	
5	Rain	17	Soft rime	
6	Solid precipitation	18	Hard rime	
7	Snow	19	Clear ice	
8	Snow grains	20	Wet snow	
9	Snow pellets	21	Hoar frost	
10	Ice pellets	22	Dew	
11	Ice crystals	23	White dew	
12	Diamond dust	24-29	Reserved	
		All 30	Missing value	

The template is flexible and open for further development, for example addition of chemical aspects (freezing temperature, salt concentration, etc). Any comment is welcome. The current version of template was tested in two lands of Germany: Mecklenburg-Vorpommern and Hessen during winter 2005/2006.

4. CONCLUSIONS

New BUFR template for road weather data was developed by experts from CHMI and DWD in accord with migration policy of WMO [1] to replace traditional alphanumeric meteorological codes by the table driven code. Application of this template is supposed for Central European Road Weather Information System [2], [3] during winter season 2006/2007.

5. REFERENCES

- [1] WMO Codes and Representation Forms <u>http://www.wmo.ch/web/www/WMOCodes.html</u>
- [2] Svarc, J., Skuthan, M. and Glanc, D. 2002. *Integrated RWIS in the Central European Territory*. Proceedings of the 11th SIRWEC Conference 2002, Sapporo, Japan.
- [3] Skuthan, M. and Glanc, D. 2006. *Central European Transnational Road WeatherInformation System*. Proceedings of the 13th SIRWEC Conference 2006, Turin, Italy.