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ABSTRACT  

The road weather stations (RWIS) are constructed to measure the conditions of the road. The 

sensor equipment normally consists of sensors for surface temperature, air temperature, relative 

humidity, wind speed, precipitation and type of precipitation. This study tries to answer which 

variables should be measured at an RWIS-station. This equipment has remained similar since 

1979 when the RWIS-stations were first introduced. At a test site outside Göteborg some 100 

climate variables, apart from the normal variables of an RWIS-station are measured. A neural 

network model is used to select the variables that give the best prediction of the surface 

temperature. Thereby recommendations of how to equip an RWIS-station can be made. Some 

climatic variables would be difficult to include in the RWIS-system because of high maintenance 

level, it may be practically impossible or simply too expensive. Results show that more 

temperature sensors in the ground help the neural network model predict the surface temperature. 

Ground heat flux and net radiation also improved the output of the model. The temperature 

predictions by the model were good when common variables were used as input and were 

improved when the additional variables were included. A forecast model from the Swedish 

meteorological office (SMHI) was also given as input for the neural network model. While the 

model from SMHI alone performed rather poorly, when combining it with the measured 

variables and the neural network model a very large improvement was achieved. The neural 

network had adapted and improved the output from the SMHI model to the site specific 

conditions. The analyzed time series was only two months long, so it was too short for the neural 

network model to learn how to predict occasions of special interest for road climate. A next step 

is to use a longer time series and more stations to improve the forecasts and so the model can 

learn to predict frost events. In the future the neural network model can be used as nowcasting 

system to improve the output from forecasting models, such as the one from SMHI.  

Keywords: Neural Network, Forecast, Road climate.  

1. INTRODUCTION  

Road weather Information Systems (RWIS) were developed some 25 years ago in response to the demand from 

winter maintenance personal to have access to more precise information about road weather conditions in their 

surveillance area [1]. Since the start of the field station manufacturing the configuration of the stations and the type 

of sensors used has changed very little. More effect has been put into the development tools such as temperature 

forecast models, etc that use the data from the field stations [2-5]. This study tries to answer which variables should 

be measured at an RWIS-station to make the best road surface temperature (RST) forecasts. At a test site outside 

Göteborg, Sweden about 100 climate variables, apart from the normal variables of an RWIS-station were measured. 

An artificial intelligence model, in this case a neural network model (NNM) was used to select the variables that 

gave the best prediction of the surface temperature. Thereby recommendations of how to equip an RWIS-station 

could be made. Prior to letting the model choose a data set a first selection was made among the variables 

according to the following criterions:  

 
1 The variables should be possible to measure at an RWIS-station and the equipment should not be too 

expensive. Examples of excluded variables are measurements taken lower than 30 cm above the surface, data from 

a sonic anemometer and from an IR gas analyser, etc.  
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2 The data set should include variables that represent physical processes, such as ground heat flux, radiation, 

sensible heat flux and latent heat flux. The ground heat flux was included by temperature gradients in the ground 

and by a heat flux plate in the ground. The radiation was represented by downwelling shortwave and longwave 

radiation and also by net radiation. The sensible and latent heat flux was represented by temperature and humidity 

gradients in the air.  

 

Of the some 100 variables the NNM was given 21 variables to choose from. From these the best predictors were 

chosen to predict the future trend in the next three hours for the RST. This prediction was compared to a prediction 

of the NNM when just using the common variables normally available at the RWIS-stations and to a prediction 

from the Swedish Meteorological and Hydrological Institute (SMHI) forecast model.  

The sensor equipment of an RWIS-station normally consists of sensors for surface temperature, air temperature, 

relative humidity, wind-speed, precipitation and type of precipitation. Air temperature and humidity sensors are 

placed at 2 m height. Assuming a road width of 20 m, the recommended sensor height, according to Oke [6] is 7 – 

20 cm. If placed higher, the sensor will be affected by other surfaces than the road. Since the temperature and 

humidity sensors are placed at 2 m, the readings will be more representative of the surroundings than of the road. 

One could expect that the NNM would suggest that a sensor closer to the ground would be useful. However, in 

Almkvist et al. [7] it was shown that the air at 2 m in the vegetation surrounding the road was representative for the 

air column above the road down to about 10 cm. Since it is practically impossible to measure below this level at an 

RWIS-station a sensor between 2 m and 10 cm will not do much difference and the model may not find it useful. 

The only sensor of the RWIS-stations that actually represents the conditions of the road is the RST sensor. One 

would therefore expect the model to be dependant on this variable, not only because it is the one it is predicting.  

The NNM has some advantages over a traditional forecast model based on physical equations. The NNM is better 

at adapting to a specific site. The model will learn from historical data how the variables at the site interact. The 

model will also adapt to any systematic errors in the instruments. This can be positive as long as the equipment is 

intact, but when a sensor is changed the model will have to learn how the new sensor behaves. A physical model 

can easier be adapted to different environments. When predicting the RST for road maintenance purposes, it is 

crucial to calibrate the RST sensor carefully. It is important to remember that the model will predict the sensor 

temperature and not the actual temperature. This is also true for the traditional forecast models since they are 

calibrated to the sensor temperature.  

In this study the NNM is preferable to a physical model, since it is much easier to vary the number of input 

variables. The model will adapt automatically to the new variables. With a physical model the equations will have 

to be changed for each new input variable, which will be difficult and time consuming.  

 
Fig. 1. The asphalt surface at Säve as seen from the north-west. The sensors in the asphalt are near the right tower 

towards the centre of the surface. The two towers carry most of the instrumentation used in the study. The road is 

seen as a grey line in the foreground.  
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2. SITE AND INSTRUMENTATION  

The test site is situated at Säve Airport 10 km north of Göteborg. The measurement area consists of a 26x26 m 

asphalt surface in an open area along a two lane road. There is a 2 m wide ditch that separates the road from the 

asphalt area. Two masts with instrumentation are situated at the west side of the asphalt area (figure 1). There is a 

workmen’s cabin at the east side of the surface while the south and western sides are fenced. The main wind 

direction is western, so the influence from the cabin is normally small, but the fence will cause extra turbulence. 

The asphalt surface was built up to be representative of a normal Swedish road. Hence it was constructed with a top 

layer of 7 cm asphalt followed by 70 cm of crushed rock. A geotextile was placed to separate the crushed rock from 

the clay soil below. All the variables measured at the test station are not listed in this paper, but the ones that were 

selected are presented in table 1. There were some additional variables measured that were not included in the 

table, but they are not used in this study. Some of the variables used in the study were calculated by combining 

different variables. This will be further explained in section 4. The measurements are described more in detail in 

Almkvist and Jansson [8].  

3. THE NEURAL NETWORK MODEL  

Using the NNM contains two stages, but it is only the second part of the NNM that uses a neural network training 

algorithm. The first part of the model is actually a powerful statistical method that uses a Feature Selection 

Algorithm to select which variables to use for the predictions. However, the first step is to choose the RST as the 

variable to predict. Then the Feature Selection Algorithm uses the Mutual Information (MI) of the variables to 

choose the most important predictors. MI is a good indicator for the relevance of a variable [9].  

3.1 Feature Selection Algorithm  

A good indicator for the relevance of a variable is to use the Mutual Information (MI) [9]. Battiti [10] formalized a 

greedy selection scheme to select n variables from all input predictors which maximizes MI. The scheme works in 

the following way: MI is calculated for pairs of each variable and the RST using several mathematical techniques 

[11-14]. The variable giving the highest MI is selected as the most important. The selected variable is then grouped 

with the RST to calculate MI for another variable. The variable with the highest MI gives the second most 

important variable. This is grouped with the RST and the first selected variable and the procedure is repeated until 

n variables have been selected.  

3.2 Neural Network Predictor  

Application of neural networks in time series forecasting [15-17] is based on the ability of neural networks to 

approximate nonlinear functions. A neural network is a computational model that is loosely based on the neuron 

cell structure of the biological nervous system. Given a training set of data, the neural network can learn the data 

with a learning algorithm; in this research, we used the most common algorithm, backpropagation together with the 

Extended Kalman Filtering (EKF) [18-19]. During the training phase, the neural network forms a mapping between 

inputs and desired outputs from the training set by altering weighted connections within the network. The neural 

network training phase can be expressed as a problem of finding the state estimate that minimizes the least square 

error, using all the previous measurements.  

4. CASE STUDY  

4.1 Selection of variables  

As stated in section 1 the variables were selected according to their ability to represent physical processes and to 

make it practically possible to use them in an RWIS-station. Temperature and humidity gradients are calculated 

from differences between 5 m and 2 m and between 2 m and 0.3 m. These gradients represent sensible and latent 

heat flux, but as discussed in section 1, the height of 0.3 m is not sufficiently low to be representative for the road 

surface, so it is likely that the gradients reflect the conditions of the surroundings, rather than the road. The quality 

of the humidity sensors is especially important during hazardous conditions when there is risk for frost formation. 

Two different kinds of humidity sensors were studied. The Rotronic sensor is commonly used at the RWIS-station, 

whereas the Vaisala sensor is more expensive and normally used for research purposes. The cheaper sensors have 

recurring problems when the humidity is high, due to dew formation on the sensor. The more expensive sensor will 

heat the sensor when humidity is above a critical level and therefore avoid this problem. To see whether this had an 

impact on the RST forecast this comparison was made.  
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Variable  Symbol  Comment  

Downward solar radiation  Kd [W/m2]  Pyranometer, Kipp & Zonen  

Downward longwave radiation  Ld [W/m2]  Pyrgeometer, Kipp & Zonen  

Net solar radiation  Ns [W/m2]  Pyrano/Pyrgeometer, Kipp & Zonen  

Ground heat flux at the surface  Qg [W/m2]  Hukseflux + RT gradient  

Ground heat flux at 4 cm depth  Qg 04[W/m2]  Hukseflux  

Precipitation  R [mm]  Tipping bucket  

Road surface temperature  RST [°C]  Pt-100  

5 cm depth road temperature  RT5 [°C]  Pt-100  

Wind speed 10 m  Ws [m/s]  3-cup anemometer  

Relative humidity 2 m  Rh [%]  Capacitive, Rotronic  

Vapour pressure 2 m  E [Pa]  Capacitive, Rotronic  

Relative humidity 2 m  Rh200 [%]  Capacitive, Vaisala HMP-243  

Vapour pressure 2 m  E200 [Pa]  Capacitive, Vaisala HMP-243  

RT gradient (0 cm and 5 cm depth)  dTdz0-5 [°C/m]  Pt-100  

Second spatial derivative of RT (0, 5 cm and 10 

cm depth)  

d2Tdz2 [°C2/m2]  Approximated by finite difference, Pt-100  

Air temperature gradient (5 m and 2 m)  dTdz5-2 [°C/m]  Pt-100  

Air temperature gradient (2 m and 0.3 m)  dTdz2-03 [°C/m]  Pt-100  

Vapour pressure gradient (5 m and 2 m)  dedz5-2 [Pa/m]  Capacitive  

Vapour pressure gradient (2 m and 0.3 m)  Dedz2-03 [Pa/m]  Capacitive  

Air Pressure  P [Pa]  Environmental office  

Air temperature 2m  Ta [°C]  Pt-100  

 
Table 1: Meteorological variables used with the feature selection algorithm. RT is short for Road Temperature.  

Rank  Best predictors Rank Best predictors 

1  mRST (t-3 〉t)  15  md2Tdz2(t-5 〉t)  

2  mRST (t-4 〉t)  16  mQg(t-4 〉t)  

3  mRST (t-5 〉t)  17  mNs(t-4 〉t)  

4 *  mRST5 (t-3 〉t)  18  mNs(t-5 〉t)  

5  mRST5 (t-4 〉t)  19  mKd(t-4 〉t)  

6  mRST5 (t-5 〉t)  20  mKd(t-5 〉t)  

7 *  md2Tdz2(t-3 〉t)  21  mQg(t-5 〉t)  

8  mdTdz05(t-4 〉t)  22 *  gmRST5  

9  mdTdz05(t-3 〉t)  23  gmNs  

10 *  md2Tdz2(t-4 〉t)  24  mQg(t-3 〉t)  

11 *  mdTdz05(t-5 〉t)  25  mKd(t-3 〉t)  

12  mQg4cm(t-3 〉t)  26  gmRST  

13  mQg4cm(t-4 〉t)  27 *  gmd2Tdz2  

14  mQg4cm(t-5 〉t)  28 *  gmdTdz05  

 
Table 2: Best selected predictors. Asterisks (*) mark where the prediction improves the most.  

4.2 Results and discussion  

The system described in section 3 was applied to the data collected by the meteorological station at Säve. The 

measured meteorological variables are listed in table 1. The meteorological station sample frequency is ten 

minutes, but this was converted to 1 hour averages to reduce the amount of data. For each of the variables five 

delayed vectors were constructed as described in the following lines. Denote a vector containing the data of a 

particular variable collected by the meteorological station with m(t). Then the following vectors can be created: 

m(t-3〉t), m(t-4 〉t), m(t-5 〉t), [m(t-3 〉t)-m(t-4 〉t)] (gm) and m(t-24 〉t); in this case 〉t is 1 hour. At the end of 

the process we arrive with a matrix M [Nx5] for each meteorological parameter. N is the number of samples in the 

database (1337), about 56 days. At this point the greedy selection algorithm was applied by setting:  

F =[M
Kd 

M
Ld 
M

Ns 
.. M

Ta 
] 

,                 (1) 

 

where F is the full set of variables. This meant that globally a set of 105 possible predictors were to be scanned to 
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find a subset of the most important variables. The algorithm was stopped when it had chosen the best 28 predictors. 

The results are summarized in table 2.  

The feed-forward NNM was trained starting with 3 predictors up to 28, according to the rank order in table 2, to see 

which predictors, among the 28 selected, gave a real improvement for the road surface temperature prediction. It 

was seen that a major improvement in the prediction (lower mean square error) was achieved with the following 

input configurations: 4, 7, 10, 11, 22, 27 and 28 predictors. The predictors for which the improvements occur are 

marked in table 2. Using 11 predictors means that the RST, the second spatial derivative of RT, the RT at 5 cm 

depth and the temperature gradient between 0 cm and 5 cm depth are the key-features for the RST nowcasting. In 

the next level with 22 predictors the ground heat flux and radiative fluxes are included. Globally the NNM with 28 

predictors gives the best result with a MSE of 5.7 °C
2 

as illustrated in figure 8 a.  

 

SIRWEC 2006 25th-27th  March, Turin, ITALY



 

Figure 8 a-f: RST predictions using different sets of variables. The samples are from hour data taken during the 

period 11 February to 13 April.  

Common RWIS-stations do not have all the predictors selected so the neural system was also tested using the main 

common variables as predictors: past values of RST, past values of air temperature, past values of relative humidity 

and past values of air pressure. With these inputs an MSE equal to 6.9 °C
2 

was reached as illustrated in figure 8 b. It 

can be seen that the prediction with the predictors selected by the algorithm has a performance better than that 

using the common meteorological variables. Further it is found in figure 8 f that the biggest errors are at high 

temperature, which is in a range that is not dangerous for road conditions (ice formation). A closer look at figure 8 f 

shows that the largest errors actually occur when the maximum temperature of the day is reached.  

 

Figure 9: Bar graphs of the error distribution.  

In Sweden the SMHI (Swedish Meteorological and Hydrological Institute) provides prognosis of the RST for 1, 2, 

3 and 4 hours at many sites of the country. It was decided to compare the results of our system to the SMHI 3 hour 

prognosis for the Säve station. The results can be seen in figure 8 c. It is evident that the neural system performance 

is better in both cases: with common and selected predictors. As the SMHI prognosis is available at many sites, an 

interesting idea was to add the 3 hour SMHI prognosis to the selected predictors for the NNM. By doing this 

experiment a major improvement of the system performance was accomplished. In fact the MSE was reduced to 

3.3 °C
2 

as seen in figure 8 d.  

From the bar graph in figure 9 a it can be seen that even if the mean square error is 3.3 °C
2

, in 83 % of samples the 

absolute error is less than or equal to 2°C, which is a good result. Furthermore the variance of the error distribution 

is 1.8 °C
2

, a small value. This means that the majority of the errors are positioned very close to the mean error, i. e. 

≈1.7 °C. Finally the NNM was trained with the common variables and the SMHI prediction, which resulted in an 

MSE equal to 3.7 °C
2 

as shown in figure 8 e. From the error distribution graph (figure 9 b) we see that in 74 % of 

samples the absolute error is less than or equal to 2°C. This result is meaningful since, even with an RWIS-station 
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equipped with common sensors, a big improvement compared to SMHI predictions was achieved.  

5 CONCLUSIONS AND FUTURE PERSPECTIVES  

Some findings in this paper are quite interesting. The NNM was shown to be a useful tool to select the most 

important variables for RST prediction. Furthermore it was shown that the best prediction was made using 

variables not included in the common sensor suite of an RWIS station, like the temperature sensor at 5 cm, 10 cm 

depth and the sensors to measure ground heat flux and radiation. The analyzed time series was too short for the 

neural network model to learn how to predict frost events or occasions that are of special interest for road climate, 

so factors like sensible and latent heat flux were not helpful for the model. Nevertheless it was shown that even if 

with the common variables good results can be reached. Finally evidence was given that combining the neural 

system with the SMHI prognosis, and in general with any kind of prognosis where they are available, gives a major 

improvement of the prediction. For future developments more data from the winter period should be collected in 

order to create an “ad hoc” database to train the system. This should improve the results and delete the big errors 

shown in figure 8 f. With more data the system could be tested as a forecasting model for frost events and perhaps 

in the future be used as a warning system for road maintenance people.  

6. REFERENCES  

[1] Lindqvist, S. and Mattson, J. O. (1979). Climatic background factors for testing an ice-surveillance system. 

GUNI report, 13(35). pp. Available from Göteborg university, Department of earth sciences, Box 460, 405 30 

Göteborg, Sweden.  

[2] Bogren, J., Gustavsson, T., and Lindqvist, S. (1992). A description of a local climatological model used to 

predict temperature-variations along stretches of road. Meteorological Magazine, 121(1440):157–164.  

[3] Gustavsson, T. and Bogren, J. (1993). Evaluation of a local climatological model -test carried out in the 

county of halland, sweden. Meteorological Magazine, 122(1456):257–267.  

[4] Shao, J. and Lister, P. J. (1996). An automated nowcasting model of road surface temperature and state for 

winter road maintenance. Journal of Applied Meteorology, 35(8):1352–1361.  

[5] Thornes, J. E. and Shao, J. (1991). A comparison of uk road ice prediction models. Meteorological Magazine, 

120(1424):51–57.  

[6] Oke, T. R. (1992). Boundary layer climates. London : Routledge, page 435p.  

[7] Almkvist, E., Gustavsson, T., and Bogren, J. (2005). An attempt to define the road climate room. 

Meteorological applications, 12:357-370.  

[8] Almkvist, E. and Jansson, C. (2004). How to measure the energy balance of a road surface. Proceedings for 

SIRWEC conference, Bingen, Germany, June 2004, page 7p. 

(http://www.sirwec.org/conferences/bingen2004.html).  

[9] T.M. Cover and J.A. Thomas, Elements of Information Theory. John Wiley & Sons, 1991.  

[10] R. Battiti, “Using Mutual Information for Selecting Features in Supervised Neural Net Learning,” IEEE Trans. 

Neural Networks, vol. 5, no. 4, pp. 537-550, July 1994.  

[11] L.F. Kozachenko and N.N. Leonenko, Probl. Inf. Transm. 23, 95 (1987).  

[12] P. Grassberger, Phys. Lett. 107 A, 101 (1985).  

[13] R.L. Somorjai, “Methods for Estimating the Intrinsic Dimensionality of High-Dimensional Point Sets”, in 

Dimensions and Entropies in Chaotic Systems, G. Mayer-Kress, Ed. (Springer, Berlin 1986).  

[14] J.D. Victor, Phys. Rev. E 66, 051903-1 (2002).  

[15] Wang H. A.& Chan A. K.-H. (1993), "A feedforward neural network model for Hang Seng Index", 

Proceedings of 4th Australian Conference on Information Systems, Brisbane, pp. 575-585.  

[16] Windsor C. G. & Harker A. H. (1990), "Multi-variate financial index prediction -a neural network study", 

Proceedings of International Neural Network Conference, Paris, France, pp. 357-360.  

[17] White H. (1988), "Economic prediction using Neural Networks: The case of the IBM daily stock returns", 

Proceedings of IEEE International Conference on Neural Networks, pp. 451-458.  

[18] ČerĖanský, M., Makula, M., BeĖušková, ď.: Processing Symbolic Sequences by Recurrent Neural Networks 

Trained by Kalman Filter-Based Algorithms. In: SOFSEM 2004: Theory and Practice of Computer Science, 

Matfyzpress, Praha, Vol. 2 (2004), 58 -65  

[19] Julier, S.J., Uhlmann, J.K.: A New Extension of the Kalman Filter to Nonlinear Systems. In: Int. Symp. 

Aerospace/Defense Sensing, Simul. and Controls, Orlando, FL (1997)  

SIRWEC 2006 25th-27th  March, Turin, ITALY


	Introduction.pdf
	SIRWEC 2006 
	 
	SIRWEC 2006 

	Conference_articles.pdf
	Index.pdf
	INDEX 
	 
	SUBMITTED PAPERS TOPIC I :……………………………………...1  
	Recording and Evaluation of Road Weather Data………………………………..1  
	SUBMITTED PAPERS TOPIC II :…………………………………...49 
	Forecast Methods and Accuracy………………………………………………….49 

	SUBMITTED PAPERS TOPIC III :…………………………………116 
	Traffic and Traffic Safety in Winter…………………………………………….116 

	SUBMITTED PAPERS TOPIC IV :…………………………………163 
	Road Weather Information Systems: Actual Problems………………………..163 

	SUBMITTED PAPERS TOPIC V :…………………………………..194 
	Further Development of Road Weather Information Systems………………..194  



	Articles.pdf
	topic I.pdf
	Recording and Evaluation of Road Weather Data 

	Helbig.pdf
	ABSTRACT 
	2. MEASUREMENTS 
	3. MODEL DESCRIPTION 
	 
	 
	 
	4. RESULTS 
	  
	Fig. 3. Road surface temperature (RST) for two days in autumn simulated with different albedo values. 
	5. CONCLUSIONS 
	  
	Fig. 4. Road surface temperature (RST) for two days in winter simulated with different horizontal resolution. 
	 
	6. REFERENCES 


	Pasero.pdf
	 
	1. INTRODUCTION 

	Haavasoja.pdf
	Hammond.pdf
	Meindl.pdf
	 
	1. INTRODUCTION 

	Vitabile.pdf
	 
	1. INTRODUCTION 

	Selvi.pdf
	1. INTRODUCTION 

	topic II.pdf
	SUBMITTED PAPERS TOPIC II : 
	Forecast Methods and Accuracy 

	Bezrukova.pdf
	1. INTRODUCTION 
	2. ICE LOADING IN MOSCOW REGION 
	4. DIAGNOSINC AND FORECASTING ROAD ICING 
	5. CHEMICAL BLOCK OF PROPORTIONING DE_ICING ACTIONS 
	6. MODEL EVALUATION 
	7. REFERENCES AND CITATIONS 

	Takahashi.pdf
	1. INTRODUCTION 

	Nishimura.pdf
	 
	1. INTRODUCTION 

	Delaunay.pdf
	1. INTRODUCTION 
	2. WIND MODELLING 
	2.2 Time prediction 
	2.3 Generation of spatio-temporal wind series 
	3. AERODYNAMIC COEFFICIENTS 
	3.2 Wind tunnel tests 
	3.3 Computational Fluid Dynamics   
	3.4 Field tests 

	4. RISK EVALUATION 
	5. WIND ALARM SYSTEM PROTOTYPE 
	6. CONCLUSION 


	Petersen.pdf
	1. INTRODUCTION 

	Raspanti.pdf
	 
	 
	1. INTRODUCTION 

	Raimondo.pdf
	ABSTRACT 
	1. INTRODUCTION 
	2. CLIMATIC SIGNALS 
	Kind of Measure
	Termometer
	Wind direction
	Wind intensity
	3. FOURIER ANALYSIS RESULTS 

	Signal
	4. WAVELET ANALYSIS RESULTS 
	5. CONCLUSIONS 
	6. REFERENCES 



	Almkvist.pdf
	Salerno.pdf
	 
	1. INTRODUCTION 

	topic III.pdf
	SUBMITTED PAPERS TOPIC III : 
	Traffic and Traffic Safety in Winter 

	Fujimoto.pdf
	Kobayashi.pdf
	1. INTRODUCTION 

	Justas.pdf
	 
	 
	 
	 
	Variation of traffic accidents volume on different phases of adverse weather conditions 
	1. INTRODUCTION 
	 
	2. VARIATION OF TRAFFIC ACCIDENTS VOLUME ON DIFFERENT PHASES OF ADVERSE WEATHER CONDITIONS 
	3. CONCLUSIONS 
	4. REFERENCES 

	Nokhandan.pdf
	Andersson.pdf
	1. INTRODUCTION 
	2. DATA AND METHOD  
	2.1 Study area 
	2.2 Swedish climate 
	2.3 Road weather data and winter index 
	2.4 Method 
	3. RESULTS 
	3.1 Distribution of slipperiness – a country perspective 
	3.2 Distribution of slipperiness in Sweden divided into seven regions 
	3.3 Distribution of different types of slippery conditions 
	3.3.1 Moderate hoarfrost (HR1)  
	3.3.2 Severe hoarfrost (HR2) 
	3.3.3 Road icing (HT) 
	3.3.4 Rain or sleet on a cold road (HN) 
	3.4 Distribution of slipperiness – a regional perspective 
	3.5 Distribution of different types of slippery conditions in Region Väst  

	4. DISCUSSION AND CONCLUSION 
	5. REFERENCES 


	Schirokoff.pdf
	ABSTRACT 
	1.  INTRODUCTION 
	2.  METHOD 
	3.  RESULTS 
	4.  DISCUSSION 
	ACKNOWLEDGEMENTS 
	5 REFERENCES 

	Chapman.pdf
	ABSTRACT  
	 
	2.3 Results 
	 3. ROBUST (STATIC) SOLUTION 


	Bogren.pdf
	Gustavsson.pdf
	 
	1. INTRODUCTION 

	topic IV.pdf
	SUBMITTED PAPERS TOPIC IV : 
	Road Weather Information Systems: Actual Problems 

	Smithson.pdf
	 
	ACHIEVING TECHNOLOGY TRANSER 
	WITH 
	INTERACTIVE COMPUTER-BASED TRAINING 
	ABSTRACT 
	1.  INTRODUCTION 
	3.  ACHIEVING TECHNOLOGY TRANSFER & CULTURAL CHANGE WITH EDUCATION 
	 
	A metric version of the CBT was prepared in 2005 for use in the Canadian Provinces.  Converting to metrics was more than just doing the mathematics.  Canadian maintenance field jargon and techniques were added to gain field acceptance.  Value Added Meteorological Service (VAMS) vendor screen shots had to be added.  Also maps and radar had to be extended northward to provide adequate coverage of the Canadian Provinces. 
	Unanimous feedback from United States DOT and Canadian Provincial and City maintenance personnel and trainers has been the CBT exceeded their expectations.  The CBT was easily installed on their computers and fit well into their training program.  Some DOTs made the CBT part of their career ladder curriculum while others let progress be a self-directed process.  The CBT will work well in either the group or individual training mode.  The individual training mode is the most popular use.  Being a stand-alone CBT program, operators can train during periods where field conditions or weather result in less productive environment.  Field operators and supervisors found the CBT very engaging and challenging.  Most found two hours at a session fits best into their daily work schedule and does not mentally wear them out.  Since the CBT is a stand-alone application on the garage computer, it is readily accessible.  Depending on student experience and ability, time required to complete all seven lessons varies from 20 to 40 hours. 
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