

Centre for Economic Development, Transport and the Environment for Southeast Finland

Friction as a Measure of Slippery Road Surfaces

Taisto Haavasoja¹ and Yrjö Pilli-Sihvola²

¹Teconer Oy, Helsinki, Finland E-mail: name.surname@teconer.fi ²ELY Centre for Southeast Finland, Kouvola, Finland E-mail: name.surname@ely-keskus.fi

Contents

- Icing of a road surface covered with a salty solution
 - What does freezing point mean?
- Basics of friction
 - physical meaning, braking distance
- Practical means of measuring friction
 - force based means
 - indirect means
 - acceleration based means

lcing

- Freezing of water and deicer solutions
 - Depression of Freezing Point (DFP)
- When temperature drops below DFP,
 - 1. only a fraction of solution freezes
 - 2. the composition of ice and solution is softer than ice formed from clean water
 - 3. friction on a mixture of solution and ice is appreciably higher than without the solution

Icing: consequences

- clean water to ice:
 - 30 μm layer of ice can reduce friction dramatically
 - 1 mm of hard ice, friction may be < 0.20</p>
- solution of water and deicer chemical:
 - -1 mm of soft ice, friction likely > 0.40

Prevention of Low Friction

- 1. Presalt at the right time!
 - avoid hard ice
- 2. Follow development of friction.
 - refreezing is a slow process!
- 3. Apply more salt if needed.

Friction Basics

• By definition

$$\mu = F_{\mu} / F$$

Since during braking

$$F_{\mu} = m a$$
,

where a is deceleration, we get

$$\mu = a / g$$
 (g = 9.81 m/s²)

Consequences

- if all tires are active in braking
 - deceleration equals friction
 - friction is independent of the mass of the vehicle
- friction is a unique measure of slipperiness
 - friction is an absolute quantity
 - no units, since ratio of forces
- typical variation of friction:
 - dry road 0.80 ± 0.10 (depends on tire and surface conditions)
 - hard ice 0.20 or less (all tires when thick layer of hard ice)

Friction and Slip

- maximum in friction force at about 20 % slip
- Olsson et.al., Friction Models and Friction Compensation
- practical measurements for winter maintenance
 - enough to know friction in increments of 0.10

Braking Distance

Measuring Friction by Force

- typically "a third wheel" on a trailer or an extra wheel
- numerous manufacturers
- advantages for road use
 - continuous data
 - accurately calibrable
- disadvantages
 - cost
 - difficult to use
 - temperature effects

Friction measuring vehicles:

- 1. Instrumented Tire Test Vehicle (Truck)
- 2. Diagonal-Braked Vehicle
- 3. Mu-meter trailer
- 4. BV-11 skiddometer trailer
- 5. GripTester trailer
- 6. Surface friction tester
- 7. Runway friction tester
- 8. Tatra friction tester
- 9. ASTM E-274 skid trailer
- 10. Dynamic friction tester
- 11. Norsemeter variable slip friction tester
- 12. IMAG variable slip friction trailer
- 13. James Brake Index decelerometer vehicle
- 14. Portable helideck friction tester
- 15. Portable drag-slip tester
- 16. Penn State skid trailer
- 17. BV-14 skiddometer trailer
- (Ref: 15th Nasa Tire/Runway Friction Workshop)

Friction by Indirect Means

- determine friction by a model
 - detect surface coverage, weather conditions, ...
 - work out a correlation between the environmental variables and the measured friction
- Vaisala Remote Road Surface State Sensor DSC111
 - measures water, ice and snow layer →
 reports friction

DSC111 Installed to a Vehicle

Test Run on Highways E12 – E18

Temperature about -6 °C: wheel tracks slippery on E12, not on E18.

DSC111 Friction vs. Deceleration

Friction Meters by Acceleration

- older models measure
 - force on a macroscopic peace of mass during braking or
- nowadays
 - digital micro-electro-mechanical sensors
 - 3D measurement
- latest development
 - cell phones and an application

TECONER OY Technical Consulting & Research

Deceleration and Change in Speed

Deceleration sensor 1 Friction

Cell Phone Friction Meters

- many modern cell phones have a 3D accelerometer → application
- advantages
 - communication, GPS, camera, voice
 - absolute calibration against gravity
 - easy to use: a few seconds and go!
 - very short braking is enough!
 - any position
 - vehicle independent
 - real time map interface to data

Comparing three different phones

TECONER OY

Technical Consulting & Research

Map interface to Mobile Friction Measurement System (MµMS)

For details look at:

http://www.liukasta.info

Centre for Economic Development, Transport and the Environment for Southeast Finland

Conclusion

- Freezing of solutions
 - meaning of DFP
 - soft and hard ice
- Friction coefficient
 - an absolute measure of slippery surfaces
- Measuring friction
 - there are easy, reliable and cost effective ways to measure friction on highways