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Abstract 

Changes in the aerodynamic characteristics of a site can have a major influence on the wind 

regime at the surface/air interface along a road which in turn has a local effect on road surface 

temperatures. Traditionally a parameter known as roughness length (Z0) is used as the primary 

measure of the aerodynamic roughness of a surface, but Z0 is notoriously difficult to estimate. 

This study takes a new approach to the estimation of Z0 for a route-based road weather 

prediction model, using high resolution LIDAR data coupled with spatial processing 

techniques to provide estimates of effective roughness length (Z0
eff

) which take into account 

both the prevailing wind direction and the height of the surface elements (e.g. buildings, trees) 

within the upwind fetch of the forecast points. The range of roughness values obtained using 

this new technique are consistent with published values obtained from detailed boundary layer 

experiements, and are shown to distinguish between a variety of land use categories around a 

mixed urban and rural study route, thus giving confidence in the new technique. 
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1. Introduction 

Obtaining local values of surface roughness for application in a road weather prediction 

model can be problematic. Typically the roughness length (Z0) is used, which is a measure of 

the aerodynamic roughness of a surface affecting the height at which the neutral wind profile 

near to the ground extrapolates to zero (Oke, 1992). The length Z0 is related, but not equal to, 

the height of the surface elements and is also a function of the shape and density of the 

elements. As such, Z0 is notoriously difficult to calculate, and practical estimation of Z0 at a 

particular locality is often based on published values for roughness of similar terrain 

elsewhere (Wieringa et al, 2001). A detailed review of roughness data from boundary-layer 

experiments conducted in the 1970s and 1980s was undertaken by Wieringa (1993), who 

found that the 1960 Davenport classification of effective terrain roughness (Davenport, 1960) 

most reliably described the effective roughness of realistic landscape types. The original 

Davenport classification has since been updated at both ends of the classification scale 

(Wieringa, 1992; Wieringa et al, 2001), providing arguably the best field-validated roughness 

classification to date (Table. 1). 

In the following, a new method for parameterising surface roughness in a route based road 

weather prediction model (ENTICE) using high resolution LIDAR data obtained from 

airborne surveys is proposed. The range of roughness values obtained using the proposed 

method are compared to published roughness values for similar terrain based on the updated 

Davenport classification of effective terrain roughness (Table. 1). Statistical comparisons are 

then undertaken to assess whether the new roughness values distinguish between various land 

use classes, using the current ENTICE land use dataset and a more comprehensive land-cover 

dataset developed by Owen et al (2006). Finally, statistically modelling is used to assess the 

potential influence of the newly derived surface roughness data on the prediction of road 

surface temperatures. 
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Table. 1. Davenport classification of effective terrain roughness (Wieringa et al, 2001) 

Z0 (m) Landscape Description 

1. 0.0002 

“Sea” 

Open sea or lake (irrespective of wave size), tidal flat, snow-covered flat 

plain, featureless desert, tarmac and concrete, with a free fetch of several 

kilometres. 

2. 0.005 

“Smooth” 

Featureless land surface without any noticeable obstacles and with 

negligible vegetation; e.g. beaches, pack ice without large ridges, marsh 

and snow-covered or fallow open country. 

3. 0.03 

“Open” 

Level country with low vegetation (e.g. grass) and isolated obstacles with 

separations of at least 50 obstacle heights; e.g. grazing land without wind 

breaks, heather, moor and tundra, runway area of airports. Ice with ridges 

across-wind. 

4. 0.10 

“Roughly 

Open” 

Cultivated or natural area with low crops or plant covers, or moderately 

open country with occasional obstacles (e.g. low hedges, isolated low 

buildings or trees) at relative horizontal distances of at least 20 obstacle 

heights. 

5. 0.25 

“Rough” 

Cultivated or natural area with high crops or crops of varying height, and 

scattered obstacles at relative distances of 12 to 15 obstacle heights for 

porous objects (e.g. shelterbelts) or 8 to 12 obstacle heights for low solid 

objects (e.g. buildings). 

6. 0.5 

“Very Rough” 

Intensively cultivated landscape with many rather large obstacle groups 

(large farms, clumps of forest) separated by open spaces of about 8 obstacle 

heights. Low densely-planted major vegetation like bush land, orchards, 

young forest. Also, area moderately covered by low buildings with 

interspaces of 3 to 7 building heights and no high trees. 

7. 1.0 

“Skimming” 

Landscape regularly covered with similar-size large obstacles, with open 

spaces of the same order of magnitude as obstacle heights; e.g. mature 

regular forests, densely built-up area without much building height 

variation. 

8. ≥ 2.0 

“Chaotic” 

City centres with mixture of low-rise and high-rise buildings, or large 

forests of irregular height with many clearings. 

 

 

2. Re-parameterising effective roughness length for a route-based forecast model 

2.1. Methods for calculating effective roughness length 

In the ENTICE road weather prediction model, Z0 is currently parameterised with respect 

to the ordinal land use and road type classifications at each forecast point using a look-up 

table of Z0 values assimilated from various scientific literature. These values are a major 

oversimplification since they fail to account for variations in the surface elements within 

classes, and they take no account of wind direction and the associated surface elements within 

the upwind fetch. A simple rule of thumb for estimating Z0 (Oke, 1992; Grimmond and Oke, 

1999) which ignores the shape and spacing of the elements holds that, to a first order, Z0 is 

related to the height of the surface elements (ZH) by the empirical coefficient f0 derived from 

observation, whereby: 

𝑍0 = 𝑓0𝑍𝐻
                                                                    (1) 

 

Both Garratt (1992) and Hanna & Chang (1992) estimate the value of f0 to be ~ 0.1, which 

is a commonly quoted value for surfaces in general (Grimmond and Oke, 1999). Such a 

simple rule of thumb ignores the fact that Z0 should intuitively show maximum values at 

intermediate densities of surface elements due to the smothering of surface roughness at high 

densities. This smothering effect causes an increase in the zero-plane displacement length (Zd) 
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until the surface elements are so densely packed that they merge to form a new surface (i.e., 

ZH = Zd) with Z0 returning to its background value. Thus, the expected form of Z0/ZH, with a 

peak at intermediate densities, means that this simple rule of thumb increasingly 

overestimates Z0 at very high and very low densities and fails to identify the roughness peak, 

but across the range it does yield reasonable values for Z0 (Grimmond and Oke, 1999). Z0, 

however, is a local value and well defined only for homogenous terrain. In the case of 

heterogeneous terrain, such as road environments where surface roughness varies over short 

distances due to the varying height and spacing of surface elements, it is more appropriate to 

calculate an effective roughness length (Z0
eff

) from the distribution of local Z0 values (Vihma 

& Savijärvi, 1991). The simplest way of calculating Z0
eff

 is to take the areal average (denoted

) of the available local Z0 values within a defined area, i.e. 

𝑍0
𝑒𝑓𝑓

=  𝑍0                                                              (2) 

 

Under normal circumstances the logarithmic wind profile would typically be incorporated 

into such analyses by taking the logarithmic average of the roughness lengths within the 

defined area (Vihma & Savijärvi, 1991). However, using the natural logarithm of height in Eq. 

(2) would naturally lessen the influence of taller surface elements and weight the calculated 

Z0
eff

 values towards the lower end of the roughness scale. Given the significant control that 

urban areas have on road surface temperatures due to factors such as sky view factor (Bärring 

et al, 1985; Eliasson, 1996; Chapman et al, 2001), screening (Bogren et al, 2000), increased 

traffic (Chapman & Thornes, 2005) and the urban heat island effect (Bradley et al, 2002), the 

authors, in wanting to maintain rather than reduce the disparity between urban and rural areas, 

have opted to use the arithmetic average of local Z0 values as shown in Eq. (2). 

 

2.2. Using LIDAR data to estimate Z0
eff

 

The simple height-based rule of thumb outlined in Eq. (1) was applied to a LIDAR dataset 

of the West Midlands, UK, to provide local estimations of Z0 at every forecast point along a 

mixed urban and rural study route that traverses through Birmingham city centre before 

passing through the south-west Birmingham suburbs and north Worcestershire countryside. 

The LIDAR dataset consisted of a 2m resolution Digital Terrain Model (DTM) giving 

elevation measurements of the natural terrain features, and a 2m resolution Digital Surface 

Model (DSM) which together with the natural terrain features included additional features 

such as buildings, vegetation and roads. Hence, subtracting the DTM from the DSM produces 

a dataset containing height measurements of all surface objects, which can be utilised within 

the simple height-based Z0 calculation in Eq. (1) to provide local Z0 estimations. To account 

for the prevailing wind direction and the effect of upstream surface elements on the surface 

roughness at each forecast point, Z0
eff

 values for each forecast point were calculated by taking 

the areal average of all local Z0 estimations (Eq. (2)) contained within wedge shaped areas 

spanning away from each forecast point. The wedges were calculated in ArcMap for various 

lengths of upwind fetch (100, 150, 200, 250 and 500 metres) using a 45° focal mean wedge 

neighbourhood function covering an approach angle from 247.5-292.5° to account for a 

prevailing westerly wind direction. To overcome a combination of intensive processing 

requirements and the limitation of single core processing on individual ArcMap tasks, buffers 

with distances equal to the fetch requirements were created around each of the forecast points 

and used as an analysis mask on the LIDAR dataset, from which the required LIDAR data 

within the buffer mask could be extracted and used to calculate the Z0
eff

 values. 

 

3. Comparison with published values for similar terrain 

The newly calculated Z0
eff

 values at each forecast point were compared against the 

Davenport classification of effective terrain roughness to assess whether the roughness values 

obtained using LIDAR data are typical of the values we would expect based on good quality 
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observational data.  Fig. (1) shows the percentage distribution of Z0
eff

 values over the study 

route, revealing how the roughness values are positively skewed towards the lower end of the 

roughness scale as we might expect given the predominantly rural to suburban nature of the 

route. Maximum roughness values occur with an upwind fetch of 100 metres (Fig. 2) and are 

mainly located in the urbanised city centre where Z0
eff

 values up to 3.1 metres are found. This 

compares well with the Davenport classification for “chaotic” terrain such as city centres 

containing a large mixture of low and high-rise buildings, where a Z0 value ≥2.0m would be 

expected. When the distance of upwind fetch increases, the range of roughness values around 

the route decreases (Fig. 2), most likely due to the dampening of average surface element 

heights by an increasing proportion of low-rise surface elements within the defined 

neighbourhood area over larger fetches. With a fetch of 500 metres the range of roughness 

values along the route decreases by approximately 55% to a peak value of 1.38m in the city 

centre, which are still realistic values for terrain roughness in a densely built up area. 

 

Fig. 1. Histogram showing the percentage 

frequency distribution of Z0
eff

 values over 

the five distances of westerly upwind fetch 

used in the analysis. 

Fig. 2. Hi-Low plots showing the range of 

Z0
eff

 values over the five distances of 

upwind fetch. 

 

 

At the opposite end of the roughness scale, a few Z0
eff

 values as low as 0.0004m are found 

on the westerly rural side of the route that fall within the “smooth” category of the Davenport 

classification, typical of a featureless land surface without any noticeable obstacles and 

negligible vegetation, such as beaches or fallow open country (Wieringa et al, 2001). Z0
eff

 

values as low as these are particularly low but are also plausible given their location on the 

rural section of the route within the open Worcestershire countryside. Also, the influence of 

the local road environment cannot be overlooked since roads by their very nature are smooth 

surface which undoubtedly have a dampening effect on the average surface element heights 

calculated within a defined neighbourhood area. Hence, one could argue that roughness 

values within a road environment are likely to be somewhat lower than might otherwise be 

expected for the surrounding terrain roughness. The vast majority of the rural and  semi-rural 

forecast points, however, have roughness values that place them firmly within the “Open”, 

“Roughly Open” or “Rough” categories of the Davenport classification scale, with roughness 

values ranging from approximately 0.03m up to around 0.25m (Fig. 3). Likewise, most of the 

forecast points located within the suburban and urban areas of the route have roughness 

values of between 0.25m and 0.5m (Fig. 3), placing them within the “Rough” and “Very 
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Rough” categories of the Davenport roughness scale. Thus, the overall range of roughness 

values seems typical of the values we would expect for the general land use classes around the 

route. 

 

  

Fig. 3. Z0
eff

 values 

along the study 

route based on an 

upwind fetch of 

100 metres, 

categorised using 

the Davenport 

roughness 

classification. 

LIDAR data © 

2009 Landmap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Ratio versus ordinal dataset 

The primary benefit of the newly calculated Z0
eff

 values is the ratio scale of the roughness 

dataset, which provides measures of surface roughness at a much greater resolution than the 

previous ordinal dataset. For example, the forecast points shown in Fig. (4a) are all located in 

a rural/semi-rural section of the study route according to the ENTICE land use dataset, some 

along a minor country road and some on the M5 motorway as marked in Fig. (4a). From the 

existing look-up table of Z0 values, all the forecast points along the M5 motorway would be 

assigned a Z0 value of 0.50m by default, and all the points along the minor road a value of 

either 0.25m or 0.50m dependent on the land use class assigned to each point. However, with 

the new LIDAR based technique any variations in the height and spacing of the surface 

elements within the upwind fetch influences the roughness values calculated at each 

individual forecast point. Fig. (4b) displays the same set of forecast points as Fig. (4a) with 

the newly assigned roughness values, and clearly shows variations in surface roughness along 

both the motorway and the minor road due to variations in the upwind surface elements (e.g. 

trees, hedges, buildings). Previously the forecast points along this part of the route were 

assigned roughness values based on an ordinal classification, but now surface roughness is 

calculated on a quantitative ratio scale, enabling each forecast point to be assigned a unique 

Z0
eff

 value that better represents the roughness characteristics at that particular point along the 

route. For the stretch of motorway shown in Fig. (4b), Z0
eff

 values range between 0.1m and 

Sea (0.0002)

Smooth (0.005)

Open (0.03)

Roughly Open (0.10)

Rough (0.25)

Very Rough (0.50)

Skimming (1.0)

Chaotic (>=2.0)

¯

0 4,000
Meters
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0.4m, and between 0.08m and 1.40m along the minor road as a result of the road passing 

through a small forested area which is visible from the LIDAR data in Fig. (4b). Such a 

contrast in surface roughness over relatively short distances is impossible to identify using an 

ordinal classification of surface roughness, revealing the potential value that LIDAR data can 

bring to the parameterisation of Z0
eff

 in a road weather prediction model. 

 

(a)         (b) 

Fig. 4. Z0
eff

 values for forecast points passing through a rural and semi-rural section of the 

study route, estimated using (a) the original ENTICE look-up table and (b) the new LIDAR 

spatial processing method. LIDAR data © 2009 Landmap. 

 

 

5. Statistical analysis 

To test for significant differences in the newly calculated Z0
eff

 values between the existing 

land use categories used in the ENTICE model, Kruskal-Wallis rank-order tests were 

performed on the Z0
eff

 values calculated for the five distances of upwind fetch. Kruskal-Wallis 

is the non-parametric equivalent of a one-way analysis of variance (ANOVA) and is used 

when a dataset violates the ANOVA assumptions about normality and homogeneity of 

variance. The same statistical analysis was then repeated using the urban land-cover 

classification derived by Owen et al (2006) (OWEN) for the UK West Midland metropolitan 

area in place of the ENTICE land use categories. The OWEN land-cover dataset consists of 

eight land-cover classes at 1 km
2
 resolution (villages/farms, suburban, light suburban, dense 

suburban, urban/transport, urban, light urban/open water and woodland/open land) derived 

from dimensionality reduction of 25 spatial land-cover attributes using principal components 

analysis. In comparison, the ENTICE dataset consists of 5 proxy land use classes (rural, semi-

rural, suburban, urban and city centre) derived via a spatial density analysis of vector road 

data using the method described by Chapman & Thornes (2006) to locate dense areas of the 

road network. This assumes that more heavily urbanised areas have a denser road network 

than suburban and rural areas, and takes no account of spatial land-cover attributes. 

The results from the Kruskal-Wallis analyses were highly significant (p < 0.001) over all 

five distances of fetch for both the ENTICE and OWEN land-cover classifications. This 

indicates that significant differences exist in the Z0
eff

 values between at least two of the land-

cover classes in each classification, but does not reveal where these differences occur. Hence, 

post-hoc Wilcoxon rank-sum tests were performed on the Z0
eff

 values within each independent 

M5 motorway 

 
0.1m   1.40m 

Minor road (semi-rural) 

Minor road (rural) 

M5 motorway 

   Z0 = 0.25m 

   Z0 = 0.50m 

Minor road (semi-rural) 

Minor road (rural) 

¯

0 4,000
Meters
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land-cover class, comparing each class against each other to reveal where the significant 

differences occur. Table. (2) displays a Wilcoxon p-values matrix for the ENTICE land use 

classification. 

 

Table. 2. P-values matrices for Wilcoxon rank-sum tests comparing Z0
eff

 values between 

each land use class in the ENTICE land use classification. 

 
 

The Wilcoxon p-values for the ENTICE classification (Table. 2a) reveal that up to 90% of 

the land use comparisons are statistically significant at the 95% level using a Bonferroni 

corrected significance level of 0.005 on each comparison. This indicates that significant 

differences exist in the Z0
eff

 values between the majority of the land use comparisons over all 

5 distances of upwind fetch. The Wilcoxon p-values for the more extensive OWEN 

classification revealed a similar trend, with up to 97% of the land use comparisons

statistically significant at the 95% level using a Bonferroni corrected significance level of 

0.002 on the individual comparisons. A noticeable finding was the change in significance 

values between some land-cover comparisons as the distance of upwind fetch used in the 

analysis changes. For example, differences in the Z0
eff

 values between the suburban (3) and 

urban (4) ENTICE land use classes are highly significant (p-value < 0.001) when calculated 

over a fetch of just 100m (Table. 2), but statistically non-significant (p- value ≥ 0.104) over 

greater distances of upwind fetch. Hence, the distance of upwind fetch used to calculate 

surface roughness is shown to have a significant effect on the resulting roughness values, 

which supports previous findings in the literature and increases confidence in the proposed 

LIDAR based technique. 

To assess the potential influence of the new LIDAR based Z0
eff

 values on model 

performance, regression analyses were performed on 20 nights thermal mapping data for the 

study route (dependent variable) using parameters from the ENTICE Geographical Parameter 

Database (Chapman et al, 2001) as independent variables, one of which included surface 

roughness. When the original ordinal Z0 values were replaced with the newly calculated Z0
eff

 

values obtained from LIDAR data, statistical prediction of road surface temperatures 

improved on all but one of the 20 nights (Fig. 5) 

 

Fig. 5. Improvements 

in statistical model 

performance using 

LIDAR based Z0
eff

 

values. 

 

 

 

 

 

 

 
 

 

 

 

Land Use 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 0.027 0.000 0.000 0.000 0.415 0.000 0.000 0.000 0.637 0.000 0.000 0.000 0.715 0.000 0.000 0.000 0.001 0.000 0.000 0.000

2 0.027 0.003 0.000 0.000 0.415 0.000 0.000 0.000 0.637 0.000 0.000 0.000 0.715 0.000 0.000 0.000 0.001 0.000 0.000 0.000

3 0.000 0.003 0.000 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.989 0.000 0.000 0.000 0.711 0.000 0.000 0.000 0.297 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.989 0.000 0.000 0.000 0.711 0.000 0.000 0.000 0.297 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENTICE 250m ENTICE 500mENTICE 150mENTICE 100m ENTICE 200m
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Summary and Conclusions 

A new method for parameterising surface roughness in a road weather prediction model using 

high resolution LIDAR data coupled with spatial processing techniques has been presented. 

The range of Z0
eff

 values this method produces is consistent with published values for similar 

terrain based on good quality observational data from detailed boundary layer experiments. A 

major benefit of this new technique is the ability to calculate estimates of surface roughness 

on a quantitative ratio scale, enabling the roughness characteristics at every forecast point to 

be uniquely modelled based on the height and spacing of surface elements within the 

prevailing upwind fetch. Both the ENTICE and OWEN land-cover datasets have revealed 

significant differences in Z0
eff

 values between land use groups, giving confidence not only in 

the technique itself but also to the validity of the land-cover datasets. Clearly the OWEN 

dataset provides a more comprehensive measure of land use, which is reflected in the 

statistical results where up to 97% of the Z0
eff

 comparisons between land use groups are 

statistically significant. The most appropriate distance of upwind fetch to use is somewhat 

debatable, particularly for city centres which typically display greater spatial variability in 

surface character. Most recommendations in the literature suggest the fetch requirement to be 

a function of obstacle height (Wieringa, 1993; Bottema & Mestayer, 1998; Grimmond & Oke, 

1999), which is a potential future improvement to the technique. Similarly, the new technique 

could be used to assimilate a lookup table of Z0
eff

 values for various directions of upwind 

fetch, with the values selected based on the forecast wind direction. It is also acknowledged 

that the proposed technique assumes a constant direction of upwind flow, considering each 

portion of the upstream surface being modelled as an equal contributor to the aerodynamic 

character at a given forecast point, when in reality certain patches within this upstream area 

will be greater source contributors, and others less so, due to variations in the height and 

spacing of the surface elements. Finally, it should be recognised that the proposed technique 

fails to account for the problem of moving surface elements, most notably vehicle traffic. A 

potential solution could involve the weighting of Z0
eff

 values based either on road type 

classification, or preferably daily traffic densities from loop detection systems where data is 

available. Despite these acknowledged limitations however, this newly proposed technique 

represents a significant improvement in the parameterisation of surface roughness for route-

based road weather prediction models, and the quantitative dataset it provides should facilitate 

improvements to a recently developed methodology for verifying route based road weather 

forecasts (Hammond et al, 2010), which is the focus of ongoing research. 
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