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ABSTRACT

Driving conditions on winter roads are mainly determined by slipperiness and visibility that 
can hardly be predicted in advance. Here a non-parametric regression is used to map data 
from  weather  and  environmental  conditions  forecasts  into  variables  describing  driving 
conditions.  The  visibility  is  here  characterized  by the  concentration  of  particulate  matter 
PM10  while  the  slipperiness  is  introduced  as  suggested  by  the  research  project  SRIS 
(www.sris.nu).  There  the  estimation  of  slipperiness  is  performed  by expert  drivers  based 
upon signals from ABS and ESP sensors in a car and personal  feelings during driving. In 
order to clone performance of an expert driver we developed an intelligent computer program 
that learns from a statistical data basis obtained by past joint observations of environmental 
and driving conditions to estimate the driving conditions in a new situation. During operation 
the  computer  obtains  new  data  about  the  environment  and  compares  them  with  the 
corresponding ones in the data base. Based upon their similarity, the associated past data are 
accounted  in  the  prediction  of  new  driving  conditions.  Prediction  is  performed  non-
parametrically  by  the  conditional  average  estimator.  Performance  of  the  corresponding 
method  is  characterized  by  the  correlation  coefficient  r between  predicted  and  really 
observed data.  We demonstrate  the performance  of the method by using slipperiness  data 
from high-ways in Sweden and data about PM10 in the Po valley in Italy. Relatively high 
values of correlation coefficient (r~75%) indicate that the proposed method is applicable for 
prediction of hard winter driving conditions based upon weather forecasts. 
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1. INTRODUCTION

Driving  conditions  on  a  road  are  influenced  by  weather  and  road  surface  states  that  are  changing  rather 
stochastically.[1,2,3] Consequently, we treat driving conditions as non-autonomous stochastic phenomena and 
describe their properties statistically by a general, non-parametric model.[3,4] Information for the creation of 
the  model  is  extracted  from  joint  records  of  variables  describing  driving  conditions  and  environmental 
properties quantitatively. The fundamentals of the statistical non-parametric modeling are briefly described in 
the  next  section,[4]  while  the  applicability  of  the  method  is  demonstrated  in  the  subsequent  section  by 
predicting variables representing slipperiness and concentration of particulate matter that influences visibility 
on  a  road  surface.  Based  upon  results  of  both  examples  the  performance  of  the  proposed  method  is 
quantitatively described by the correlation coefficient between predicted and original values of characteristic 
variables.[4] The final goal of our approach is to provide for a quantitative prediction of driving conditions from 
weather forecasts.[5] The predicted data could be utilized as a valuable information support to participants in 
road traffic and road services, especially in winter.
 

2. FUNDAMENTALS OF NON-PARAMETRIC MODELING

Our aim is to proceed to a general description of a relation between environmental and driving conditions on a 
particular point of a road. Both types of conditions are represented by vectors X, Y which comprise components 
of the state vector Z=(X,Y) that is further considered as a stochastic variable. Consequently, the description of 
the complete phenomenon requires utilization of the joint probability density function (PDF) f(Z).[4,6-8]] This 
function has to be created based upon experimental observations of the complete phenomenon. Let us suppose 
that a series of such observations has yielded  N joint statistical  samples {Zn=(X,Y)n;  n  = 1,...,N} which we 
further consider as a statistical data base. The accuracy of experimental  observation can be characterized by 
using  the scattering function of the instruments  comprising the traffic and weather  observation system. It is 
usually determined during the system calibration. Most frequently the scattering of instrument output at a fixed 
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input  corresponds  to  normal  distribution  that  is  described  by  the  multivariate  Gaussian  function.   Without 
essential  loss  of  generality  we  further  assume  that  the  value  of  the  standard  deviation  s is  equal  for  all 
components of vector Z. For the purpose of modeling it is convenient if the number of data N is selected so that 
the distance between samples Zn is approximately equal to the standard deviation s. 

In  our  description  we do want  to avoid any a priori  suppositions  about  the  properties  of  the observed 
phenomenon as is usually done in a parametric statistical modeling of relations between stochastic variables. 
Consequently,  we  follow  a  non-parametric  approach  and  first  estimate  the  PDF  by  the  following  kernel 
estimator:[4,6,7] 
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in  which  we  apply  the  scattering  function  g(Z-Zn)  as  the  kernel.  The  kernel  describes  the  scattering  of 
instrument output Z during measurement of this variable at a fixed input with the mean value Zn.[6,7]

In order to proceed to our goal we pose the following question: "What would be the driving conditions Y if 
the environmental conditions are given by X?" To answer it we suppose that a relation between both variables:

)(XFY =                                                                                                                          (2)

could be estimated by using the PDF given in Eq. (1). The minimization of the mean square statistical error of 
estimation yields as the optimal statistical estimator or predictor the conditional average: 

[ ]XYY |E=p                                                                                                                    (3)

Here E[ | ] denotes the conditional mean value of variable Y at the condition X. If we calculate the conditional 
average by the PDF given in Eq. (1), we obtain the estimator expressed in terms of samples (Yn , Xn ) as:
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Here we introduced the measure of similarity between X and Xn by the expression:
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The more similar is the given condition X to the n-th sample Xn, the more the complement Yn associated to it 
contributes to the estimated value Yp. Therefore, the method of estimation specified by Eq.(4) corresponds to an 
associative  recall  of  stored data  from the  data  base,  while  the  estimation  of  the  function  F  corresponds  to 
learning from examples that is a basis of artificial intelligence.[4] Determination of function F quite generally 
represents  creation  of  new  information  about  the  observed  phenomenon  based  upon  measured  data,  and 
consequently,  the estimator  in Eq. (4) is called  general or non-parametric regression.[4,6,7]  Since it can be 
performed automatically, Eq. (4) provides a valuable tool that could be simply included into intelligent traffic 
systems.[3]  In fact,  it  has  already been utilized for modeling of very complex phenomena related to traffic, 
energy consumption and turbulent fields.[3-5,8-10] If we want to predict driving conditions Y we just have to 
provide  the  data  X  about  environmental  conditions  and the  data base  containing  joint  samples  obtained  by 
previous observations of the same phenomenon. Execution of arithmetical operations indicated in Eq. (4) then 
yields the predicted value.  The performance of the proposed estimation can be quantitatively described by the 
correlation coefficient r between predicted and measured values.[4] It is specified by the standard formula from 
statistics:
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in which Var(…), and Cov(…) denote  the variance,  and covariance,  respectively.  In the cease when multi-
component variable is predicted, the correlation coefficient turns to a matrix. 

For the purpose of performance estimation we usually split the data base into two portions and subsequently 
use the first one for modeling and the second one for testing. Such cross-validation method was applied also in 
cases presented in the next section. 

3. EXAMPLES OF MODELING AND FORECASTING

3.1 Prediction of road slipperiness 

The surface slipperiness describes the most important road property during winter in Canada, Scandinavian and 
Alpine  countries.[5,11]]  It  is  well  known  that  living  beings  have  a well  developed  sense  for  estimation  of 
slipperiness and that slipperiness essentially depends on the past and present weather conditions. However, it is 
not easy to characterize this property technically since the friction coefficient is subject to large fluctuations 
when measured as a ratio of horizontal and vertical force acting on a moving vehicle. Therefore, the idea is to 
join the information about slipperiness estimated by a fleet of expert drivers driving in different conditions with 
the information provided by various kinds of sensors in vehicles and weather observation stations. Based upon 
joined information an intelligent system should be developed that could learn from the acquired data to predict 
slipperiness from weather data.  Such projects started recently in various Scandinavian countries.  In order to 
demonstrate  applicability of conditional average estimator  for this purpose we utilize here data published by 
Swedish Slippery Road Information System - SRIS (www.sris.nu  ).[11  ] 

Figure 1. Record of joint weather and slipperiness data as published by www.sris.nu.

Figure 1 shows a record of the following joint variables: temperature - T, precipitation - P, and slipperiness - S 
that was estimated by a fleet of expert drivers. Although these variables appear independent, their dependence is 
in fact hidden in the joint PDF. If we apply several components of past and present weather data together with 
the slipperiness to describe the state vector Z, then the non-parametric modeling renders possible to predict the 
slipperiness  from weather  data and past  records.  Figure 2 shows records of predicted and actually observed 
slipperiness in dependence of time.

To characterize the accuracy of the slipperiness prediction we apply the correlation plot shown in Fig. 3. A 
point in this Figure is determined by the really measured value X and the corresponding predicted value Xp. The 
correlation coefficient  of the predicted and actually observed slipperiness is calculated from all points in the 
graph and equals  r  = 0.77. It  is  instructive  that  this result  could be essentially  improved if  the slipperiness 
variable  is  transformed  non-linearly.  For  this  purpose  we  first  determine  the  maximal  value  of  measured 
slipperiness Xm and arbitrary select its half value 0.5 Xm as a critical level of slipperiness. Based on this value 
we then define a transformed slipperiness variable by a unit step function U:  Xtr = U(X - 0.5 Xm). Its value 
vanishes for slipperiness below the critical value and equals 1 for slipperiness above it; hence the transformed 
variable Xtr is applicable to roughly indicate critical conditions.  The correlation coefficient of predicted and 
actually observed transformed variable Xtr is in then r~1. This means, that a proper deterministic processing of 
data can significantly support and improve the statistical method. 
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Figure 2. Slipperiness X as measured (black) or predicted (red) 
by the conditional average estimator from weather data.

Figure 3.  Correlation plot of measured and predicted slipperiness X from weather data.

It is important that forecasting of weather is well developed and that corresponding weather variables could 
be further utilized to forecast the slipperiness. Joining of traffic and weather data is needed for this purpose. This 
possibility is now a basis for development of an intelligent system for prediction of driving conditions. 

The demonstrated example of slipperiness prediction indicates that non-parametric statistical modeling is 
applicable in the development of intelligent information processing systems that resemble properties of human 
experts. Such systems could substitute operators at various stations for traffic management and control. For this 
purpose the prediction method has to be included into more complex method of intelligent control.[4,12]

3.2 Prediction of PM10 

Beside slipperiness the air pollution is very important for characterization of driving conditions.[5] It essentially 
depends on concentration of microscopic particles in the air which is denoted as PM10. This variable describes 
the  concentration  of  solid  particles  having  diameter  in  the  range  between  0  and  10  um  and  significantly 
influences visibility and development of fog. Our goal was to develop a method for prediction of P=PM10 from 
given data about other environmental variables describing the average air temperature - T, humidity – H , and 
the average wind velocity – W. For the testing of the non-parametric modeling and forecasting we utilized the 
data base provided by ARPV - Centro Meteorologico, Teolo, Italy. It contains data obtained by measurements in 
the Po vally in Italy. A portion of the data base is presented in Fig. 4. From this data base records of the state 
vector components Z = (W,H,T,P) have been then extracted. They are shown in Figs. 5a,b,c,d. Here the time is 
next used as the sample index n.
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Figure 4. Data base used in modeling and forecasting of PM10.

 

Figure 5. Records of variables used in modeling and prediction of PM10
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Figure 6. Records of predicted (red) and measured (black) PM10.

Based  upon  data  from  joint  records  shown  in  Fig.  5  we  created  statistical  model  of  the  relation 
P=F(W,H,T) as described by Eq. 4. By using the model we then predicted hidden concentration P from 
given data of W,H,T. The result of prediction is shown together with corresponding measured data by the 
records in Fig. 6. 

Agreement between predicted and really measured data is described by the correlation coefficient r and 
shown in the correlation diagram in Fig. 7. Similarly as in the case or slipperiness also in this case the 
value of correlation coefficient r=0.74 indicates an applicable prediction of variable under consideration. 

Figure 7. Correlation diagram of predicted and measured PM10.
The agreement of both values is characterized by the linear regression line (red)

while the diagonal line corresponds to an  ideal agreement.
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4. CONCLUSIONS

In this article the focus is on a general statistical  modeling and forecasting of winter driving conditions.[5,13] 
Consequently,  non-parametric  statistical  approach is  considered since it  is  completely based upon measured 
data.[4] In spite of the complexity of driving conditions on roads, the non-parametric statistical  modeling of 
relations  between characteristic  variables by conditional  average estimator  renders possible  their forecasting 
based on environmental data. The information generated by forecasting can be transmitted to participants in the 
traffic  over  existing  communication  devices  such as  mobile  telephones  or  internet.[5]  Beside  this  it  is  also 
applicable  at the optimization  of  road service  in winter.[13]  An important  advantage  of the non-parametric 
statistical  modeling  is  that  the  governing  algorithm  is  formulated  rather  generally  and  can  be  executed 
practically automatically without essential modification at its adaptation to a specific case. It can be therefore 
easily used for ITS support.

Beside modeling of driving conditions the proposed method can be used to predict traffic flow distribution 
and related variables such as path integral of traffic activity and an optimal travelling time interval. It could also 
provide information about possibility of congestion development in a selected travelling time interval, etc.[5,14] 
Beside this, non-parametric  approach renders possible  a simple joining of weather and traffic flow data and 
related prediction of critical states. Related to the modeling of traffic flow is also renders possible modeling of 
pollution generated by the traffic and forecasting of corresponding critical states. In addition, non-parametric 
approach also renders possible consideration of traffic control variables in the modeling and thus provides also a 
basis for an intelligent control of traffic by ITS.[14]
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