

ID: 25

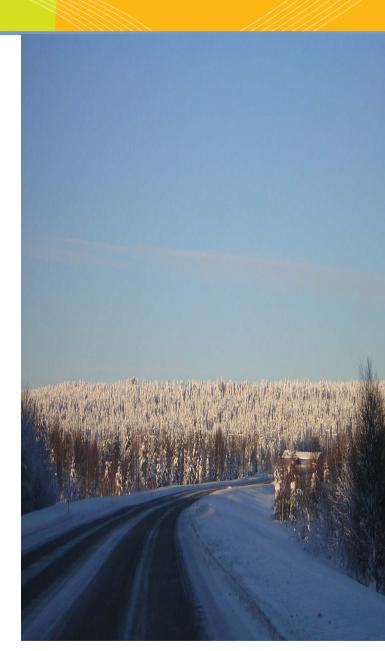
Intelligent Road **Weather Forecasting** in the **ARLINK Platform**

Pertti Nurmi

Timo Sukuvaara & Marjo Hippi

Background

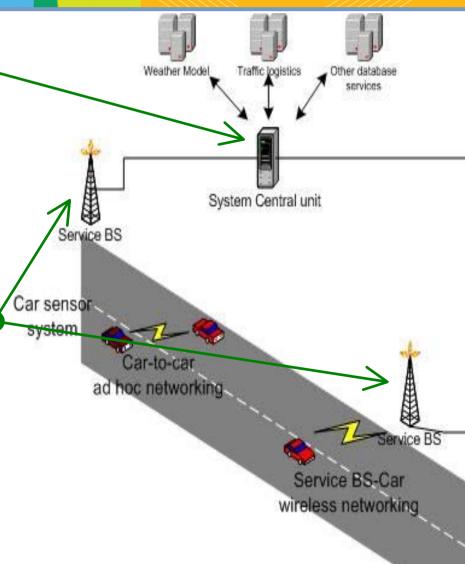
CARLINK:: Wireless Traffic Service Platform for Linking Cars


- ▲ <u>Aim</u> ⇔ Develop an intelligent wireless traffic service platform between cars which is supported with wireless (WLAN / WIMAX) transceivers along the roads
- ▶ Two-year project: Sep 2006 ... Dec 2008
- EU_Eureka Program Celtic Cluster Call 3
- Partners from Finland, Luxembourg, Spain
- Solution State State
- Sinnish project team coordinator: FMI
 - <u>Finland</u>: FMI, Mobisoft, Infotripla, Sunit, VTT
 - Luxembourg: CRP Henri Tudor, Synergiums, ACL
 - Spain: ETRA I+D, Moviquity, University of Malaga

Approach

- Backbone: <u>Traffic Service Central Unit</u> (TSCU) is installed beyond wireless transceivers to maintain the system
- TSCU communicates in real-time with vehicles facilitating various services and applications to be updated
- Intelligent services for public transportation transportation
- Spain Urban traffic management ⇔ Spain

Platform Structure (1)

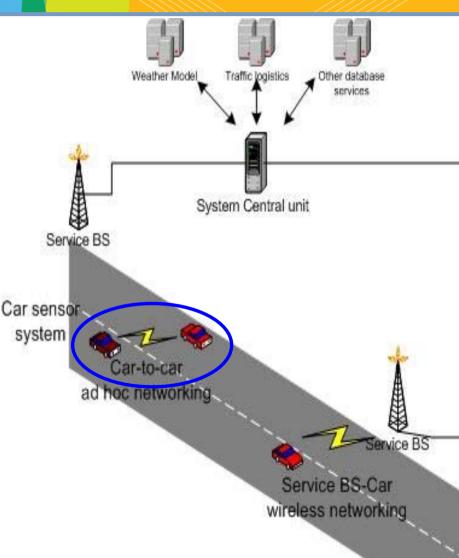

Traffic Service Central Unit

TSCU: Communication centre collecting vehicle data from Base Stations and GPRS network, delivering data to service cores, and delivering weather and warning data from Base Stations to vehicles

Traffic Service Base Stations

TSBS: Located along the roads, storing up-to-date data from TSCU and delivering it to bypassing vehicles;

Vehicle-based observed data are collected simultaneously and delivered to TSCU

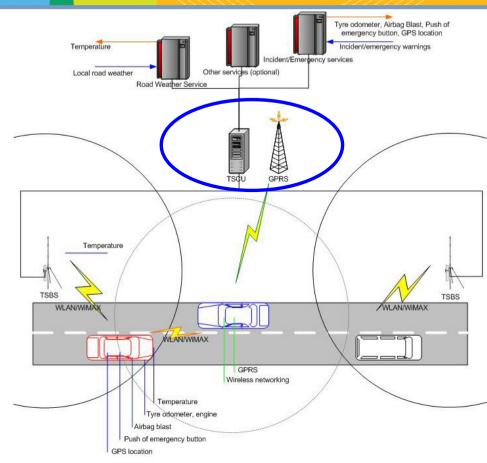

Platform Structure (2)

Vehicles receive latest service data (e.g. local adverse weather warnings) when passing TSBSs;

Vehicle-based observed data is simultaneously delivered to TSBSs;

Vehicles can also forward their newest service data to encountering vehicles \rightarrow Base Station range is enhanced

Potential critical data (e.g. accident warning) are delivered thru additional <u>GPRS network</u> to guarantee instant delivery


Platform Elements (1)

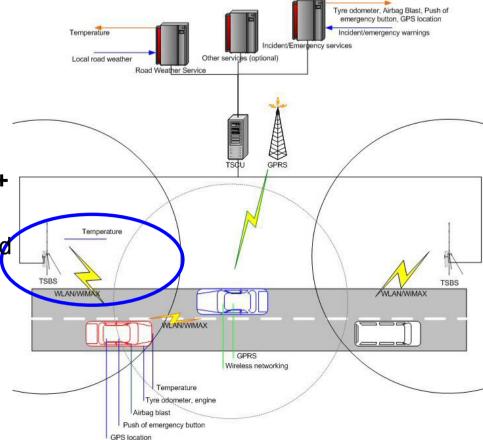
Traffic Service Central Unit (TSCU)

- System Central Unit
- **User management**
- **Data storage:**
 - i. Vehicle-based observed data
 - ii. Service data

2-way connection with vehicles

- i. Indirect connection thru base stations ⇔ Main channel
- ii. GPRS ⇔ Emergency data

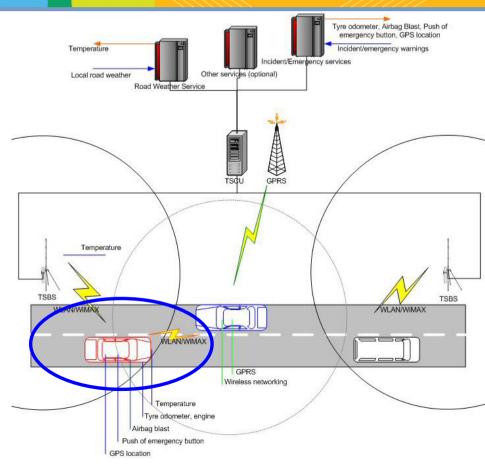
Platform Elements (2)


Traffic Service Base Stations (TSBS)

- Base station network along roads
- Delivers TSCU data to vehicles + collects vehicle-observed data
 - Up-to-date TSCU data is stored into TSBS ⇔ Delivery during vehicle bypassing
 - TSBS instrumentation provide more accurate weather observations than vehicles Applicable for vehicle data calibration and monitoring

Wireless communication by 2 means

- i. Mobile WiMAX
- ii. WLAN_IEE 802.11g



Platform Elements (3)

Mobile End Users (MEU)

- **Vehicle communication system**
- 2-way communication with TSCU
 - i. Indirectly thru base stations
 ⇔ Main channel (hi-capacity)
 - ii. GPRS: Emergency data (locapacity)
- Vehicle-to-vehicle communication
 - WLAN or WiMAX
 - Emergency data
 - Most recent platform data
 - True networking with multihop connection to base stations (future)

Platform Elements (4)

Services

- Located in a fixed network beyond TSCU
- Direct connection to TSCU
- Allowing for various services...
- Road Weather Service
 - Based on FMI RWM
 - Present 10 km model resolution enhanced with local vehicle data
 - Delivered to TSBSs
- **Let Emergency services**
 - Accidents and other critical data collected/delivered as local warnings
- **Y** Traffic logistics
 - Exploiting inofrmation of traffic load
- **Mobile user**
 - Guidance and information services for moving users

TSRS

WI AN/WIMAX

yre odometer, Airbag Plas emergency button GPS

ident/Emergency convices

GPRS

Other services (optional)

GPRS Wireless networking

Road Weather Service

WI AN/WIMAX

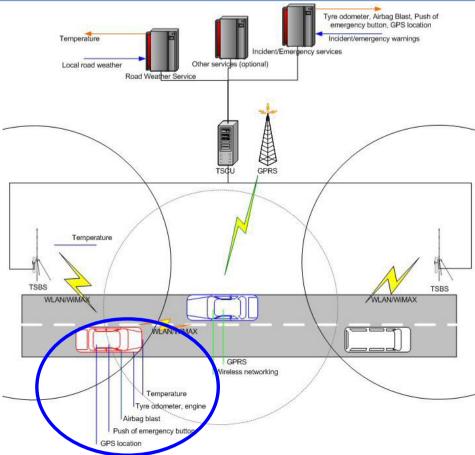
Temperature

Airbag blast

GPS location

Temperature

TSBS


WI AN/WIMAX

ncident/emergency warning

Platform Elements (5)

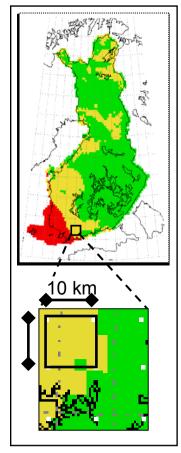
Vehicle systems

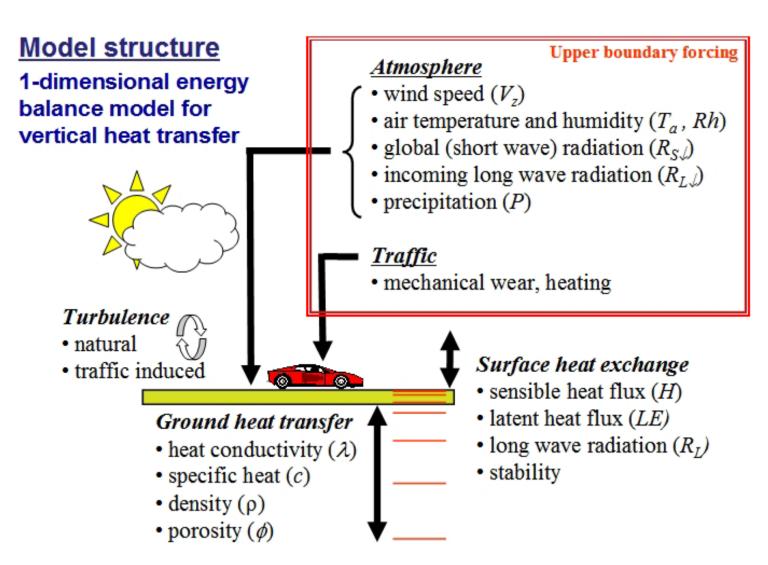
- Communication system in vehicle computer unit data from:
 - Car Internal CAN-Bus
 - ✓ Tire rotation speed
 - ✓ Airbag burst
 - CAN-Bus or own measurements
 - ✓ Outside temperature
 - ✓ Road surface temperature
 - ✓ GPS location
 - User interface
 - Emergency button
- Observation data at pre-defined intervals, with GPS location; Delivered thru TSBS to TSCU
- Emergency data instantly over GPRS to TSCU, and thru WLAN / WiMAX to encountering vehicles

Goals

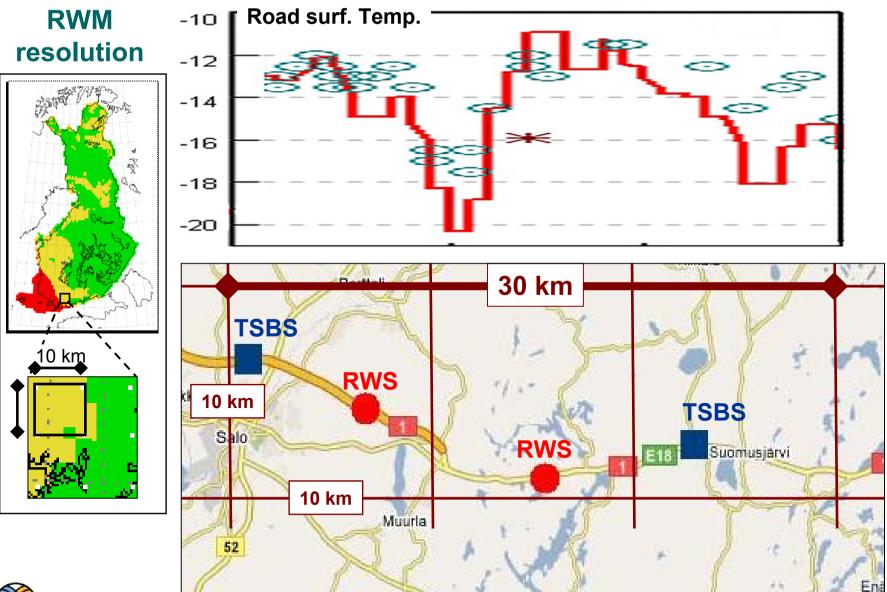
- Define interfaces between various elements of the platform
- Define individual elements and ensure their interfacing compatibilities (done by participating Partners, locally)
- Piloting operability and efficiency
 - Simulations and testing of the demonstration systems
 - Compare and analyze WiMAX- and WLAN-based platform structures
 - Test and further develop FMI's local Road Weather Service components by comparison to additional RW observations and/or forecasting systems

"Demonstration systems will be constructed to test various usage scenarios and services..."

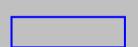



FMI

SIRWEC (ID-25) Praha 14-16 May 2


Road Weather Model

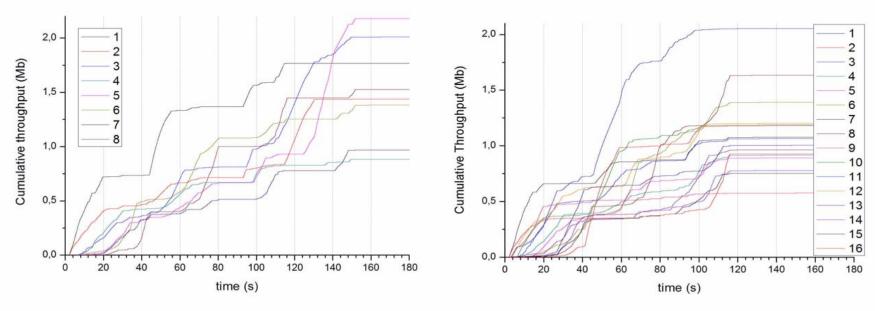
Model resolution


Road Weather example adopted from "ColdSpots" project

Test Simulations (1)

- Solution Conducted with a NS-2 simulator, with a 802.11 protocol
- Simulation of 2 scenarios:
 - i. Scenario: 8 vehicles driving to same direction at equal 100 m distance
 - ii. Scenario: 8 + 8 vehicles driving to opposite directions(those driving to same direction at equal 100 m distance)
 - Both scenarios: 4 base stations beside the road, 1000 m apart
- Connection break times and thruputs studied, with increasing traffic amounts
 - ⇔ Optimization of base station distances

Test Simulations (2)


Scenario (i) vs. Scenario (ii):

- Longer breaks in communication
- Higher thruput

Average thruput was insufficient

- Increase base station density
- Optimization of simulation parameters

Base station distance < 1 km for breakless communication

pertti.nurmi@fmi.fi

	Connection time (%)	Cumulative thruput per vehicle	Average thruput per vehicle
Scenario 1	64	1,5 Mb	15,8 kbps
Scenario 2	81	1,1 Mb	11,7 kbps

Test measurements (1)

- Communication between base station and vehicles tested with vehicle passing by station at different speeds
- Yeliminary testing within demonstration system ⇔ Driving speeds 60, 70, 80 and 90 km/h

(with 95 km/h communication could not be conducted)

End of January 2008

Equipment:

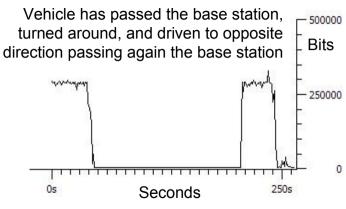
✓ Colubris MAP-330 Multiservice Access Points

✓ Sunit D7 Vehicle PC System

Toyota Hilux 2007

Test measurements (2)

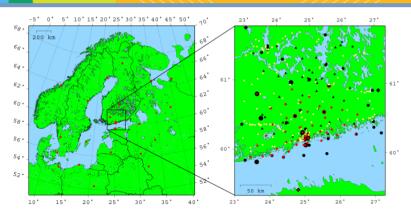
- Preliminary results only indicative: Thruput expected to decrease with increasing speed
 - Illogical results due to <u>small sample</u> (?)
 - Variations dependable on vehicle's approaching direction, temperature, etc.
- Main result, however:


Thruput appears adequate for platform services, at least

- Up to 90 km/h
- For base station-to-vehicle communication

Speed	Connection uptime during one pass	Average thruput during one pass	Avg. cumulative thruput during one pass
60 km/h	50 s	0,27 Mbps	13,3 Mb
70 km/h	38 s	0,27 Mbps	10,1 Mb
80 km/h	40 s	0,27 Mbps	10,8 Mb
90 km/h	42 s	0,26 Mbps	10,8 Mb

Example of test measurement:


Demonstration (1)

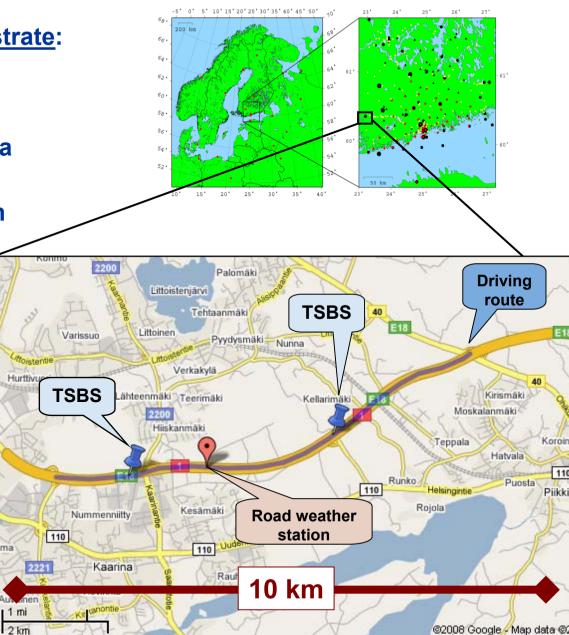
Scheduled for autumn/winter 2008

- Along Helsinki-Turku highway
- Dense weather observation network: <u>http://testbed.fmi.fi</u>

Infrastructure:

- <u>TSCU</u>: Server in a fixed network, not physically in the area; with GPRS capabilities
- <u>TSBS</u>: IEEE 802.11g access points on laptop PCs; Additional connection to weather stations
- <u>Mobile End User</u>: Sunit vehicle PC, IEEE 802.11g tranceiver, GPS locator, GPRS unit, and interfaces to CAN-Bus and external measurements
- <u>Services</u>: Road Weather and Warning service

No.	Sites in Helsinki Testbed domain	
46	FMI weather stations	•
34	FMI precipitation stations	A
13	Off-line temperature loggers in greater Helsinki area	A
8	Weather transmitters in greater Helsinki area	A
191	Road weather stations	•
292	Surface weather stations, total	
42	Pairs of weather transmitters in masts	•
5	Optical backscatter profilers (new ceilometers)	•
6	FMI ceilometers	•
4	C-band Doppler radars	•
1	Dual polarization Doppler radar	•
4	RAOB sounding stations	•
1	UHF wind profiler	
-	Total lightning network	-


SIRWEC (ID-25) Praha 14-16 May 2008

Demonstration (2)

Parameters to test & demonstrate:

- **Base station distance** optimization
- \checkmark Vehicle vs. observed data evaluation
- **User-interface evaluation** \checkmark
- **Connection time (%)** \checkmark
- **Thruput** \checkmark
- Service update time \checkmark
 - Road weather
 - Accident warning

Ima

Web links:

- ✓ <u>http://carlink.lcc.uma.es</u>
- ✓ <u>www.celtic-initiative.org/Projects/CARLINK</u>

Thank You for Your Attention !

ACL

