

New techniques for route-based forecasting

SIRWEC ID:17

Andrew Brown, Simon Jackson, Peter Murkin, Peter Sheridan, Alasdair Skea, Samantha Smith, Anthony Veal and Simon Vosper

Met Office, U.K.

This presentation covers the following areas

- Introduction
 - Producing a road forecast
- Adding local detail to road model
 - Correcting meteorology for the effects of small-scale hills and valleys
 - Representation of the effects of shading and skyview

Producing a road forecast

 Other approaches may differ in detail (e.g. role for forecaster before road model; details of statistical correction methods etc)

- RBF needs both
 - accurate, detailed meteorology AND
 - local detail in road model

Meteorological models

(Global, high resolution regional, ensembles)

Road model

(Cold air pooling, shading, sky-view, construction, traffic etc)

Forecasters

(Modifications and consultancy)

- Route-based meteorology needs both
 - Accurate, detailed meteorology
 - Use of state-of-the-art kilometre-scale NWP systems paper 16
 - · Local detail in road model
 - New techniques to represent the effects of hills and valleys not seen by the NWP model
 - Improved representation of shading and sky view effects

Representing the effects of smallscale hills and valleys

- The best way to capture the effects of hills and valleys is to use an NWP model of high enough resolution to represent them explicitly
 - Hence moves to higher resolution (4km, 1.5km)
- In practice, there will still be smaller features that have a significant impact on temperatures in reality
 - Need to represent their effects
 - Altitude-based correction
 - Valley correction

- Temperature correction = (height real height model)*(lapse rate)
- Lapse rate from model T-height relationship in area surrounding the point of interest

- Air temperature observations from 3 stable nights
- All tend to show cold spots in valleys
- However, amount of cooling in different valleys varies from case to case

Development of observed cold pools

- Cold pools usually largely established by late evening
- Consistent with Gustavsson et al (1998) observations, and arguments that in-situ cooling rather than drainage is key

- Idealized research model simulations (Vosper and Brown, BLM, 2008) to understand cooling in valleys as function of
 - Wind
 - Cloudiness
 - Depth
 - Width
- Test against car survey data

Development of modelled cold pools

- Rapid development (as in observations)
- No sign of significant drainage effects

Met Office Sensitivity to valley depth

- Cold pooling increases up to a critical valley depth
- No further increases for deeper valley (turbulence already cut-off)
- Critical valley depth depends on stability (less deep valley required to cut-off turbulence on more stable night)
- Valley temperature correction predicted as a function of non-dimensional measure of stability (Froude number)

Shading and sky view

Shading and sky view

- Science well understood and easily represented in principle in an energy balance model
 - Shading reduces incoming short-wave radiation by day
 - Restricted sky view reducing net outgoing long-wave radiation by night
- Main challenge is correctly predicting when and where shading occurs, and where sky view is restricted

Comparison of GIS shading predictions with car RST measurements

Met Office

 Excellent correlation between stretches of GIS-predicted shading and reduced RST

 \Rightarrow Use GIS to obtain shading and sky-view parameters to input in road model

- Key developments for route-based forecasting
 - High resolution NWP
 - New techniques for correcting effects of small-scale hills and valleys
 - Shading and sky view parameters
- End-to-end system being tested and refined

Questions