

Weather prediction for the road industry

SIRWEC ID:16

Andrew Brown, Simon Jackson, Peter Murkin, Peter Sheridan, Alasdair Skea, Samantha Smith and Anthony Veal

Met Office, U.K.

Producing a road forecast

 The skill of the meteorological forecast is crucial

 What can the road industry expect from NWP models now and in the future?

Meteorological models

(Global, high resolution regional, ensembles)

Road model

(Cold air pooling, shading, sky-view, construction, traffic etc)

Forecasters

(Modifications and consultancy)

This presentation covers the following areas

- Numerical Weather Prediction
 - Introduction
 - Strengths and weaknesses
- Opportunities (and challenges) presented by the next generation of models

NWP models

- Start with initial state using recent observations and information from previous forecasts
- Solve equations on threedimensional model grid
- Horizontal spacing between grid points = resolution
- Finer resolution gives more detail
 - Global: 40 km
 - Atlantic/Europe: 12 km
 - UK: 4km
 - UK development: 1.5 km

Improving performance

 Global model root mean square sea level pressure errors reducing (improving use of observations, model resolution and model formulation)

- Equitable threat score for >5/8 cloud over UK from 12km regional model
- Improving but still a challenge (especially patchy stratocumulus and cumulus convection)
- Lack of important local detail at 12km

New high resolution models

Kilometre-scale models

- Can provide crucial local detail, not captured by global and regional models with resolutions of 10km or more
 - Orographic
 - Coastal effects
 - Urban effects
 - Shower development and movement

Local detail from 4km model

Mean Anomaly in Screen Temp 00Z 01/06/2006-15-08/2006

Forecast visibility at 12 UTC 10/12/2003 from 18 UTC 09/12/2003

12km L38 (part domain)

1km L76

Verification –18 UTC 09/12/2003 Forecast

Representation of convective showers

At 092 on 27/ 2/2008 from 002 on 27/ 2/2008 loud cover and PMSL Operational auro

12km

4km

Convective development with kilometre-scale model

Model forecast

OLR and Surface Rain Rate (mm/hr) 0700

copyright met o

Radar 1130 UTC

Convective development with kilometre-scale model

Model forecast

OLR and Surface Rain Rate (mm/hr) 1130

Modis Terra 1125 UTC

© Crown copyright Met Office

Radar 1130 UTC

Benefits of increased vertical resolution

- Better able to represent the rapid variation of temperature with height close to the surface on an extreme night
- Better able to represent thin stratocumulus cloud at the top of the boundary layer
 - Consequential benefits for surface and near-surface temperature forecasts

Stratocumulus

L38 12km

At 14Z on 17/12/2007, from 03Z on 17/12/2007 Cloud cover and PMSL_Operational uk4

L70 4km

Screen temperature verification

	Mean error (deg C)	RMS error (deg C)	Hit rate	FAR	% Correct	% within 2 deg C
38L	-0.25	1.83	86.1	20.6	91.9	79.1
70L	0.08	1.68	83.3	15.3	92.9	81.5

• Implemented in Met Office 4km model, Autumn 2007

- NWP models are at the heart of modern forecasting systems
- Performance steadily improving
 - Patchy cloud remains a challenge and accurate forecasts crucial for road surface temperatures
- New high resolution models offer extra detail crucial for route-based forecasting
 - Care needed in interpretation

Questions