ID: 15

Adaptation of roads winter maintenance strategies to weather influences

T.V. Samodurova, Y.A. Yanina Voronezh State University of Architecture and Civil Engineering Email: <u>tvs@vmail.ru</u> «Weather – Meteorology – Consumer» system structure

Losses which take place at complex weather conditions

Lcw = Ero + Lv + La + Le

- *Ero* the road organizations expenditures for the winter maintenance work
- Losses in transport complex and national economy from unsatisfactory road conditions:
 - Lv Lower speed on a slippery road surface,
 - LA Cost of accident,
 - **L***E* Damage of polluted environment.

The matrix of losses

Predicted	The decisions, accepted by the road organization		
conditions	Protective measures are	Protective measures are	
F	accepted adequately, according to weather conditions	conditions	
<i>F1</i> (ice presence)	S 11	S 12	
F2 (ice absence)	S 21	S 22	

ROAD WINTER MAINTENANCE

STRATEGIES

Number of strategy	The name	Type of road slipperiness
Ι	Post salting	Glaze, ice, black ice
II	Pre-salting	Glaze, ice, black ice
III	Mechanical clearing of snow, patrol snow removal	Fresh snow
IV	Pre-salting, mechanical clearing of snow	Compacted snow

The time diagrams

ADAPTATIVE PARAMETERS

ε = L₁₁ / [(E₁₂ - E₁₁) +L₁₂] ε=0 - protection means are cardinal; ε=1 - losses are maximal and cannot be prevented

$$B = E_{11} / [(E_{12} - E_{11}) + L_{12} - L_{11}]$$

$$\beta = (1-B) + (1-2\varepsilon)/(1-\varepsilon)$$

for $\beta < 1$ the forecast loses economic utility

•
$$F = 1 - 2\varepsilon - E_{11}/[(L_{12}-L_{11})+E_{12}]$$

the values of this parameter should be positive

THE RESULTS OF THE COMPUTING TESTS (for roads of I class)

	Works are spent to cycle time	E=1	this strategy is not "meteosensible"
Ι	Works are spent in view of the minimal air temperature forecast	$\varepsilon = 0,31$ $\beta = 1,06$ F = 0,04	this scheme gets in a zone of adaptation. Forecasts of the minimal air temperature allow to receive the certain economic benefit
ΙΙ		$\varepsilon = 0.06$ $\beta = 1.86$ $\varepsilon = 0.75$	at pre-icing strategies losses practically are completely prevented and protection
		<i>F</i> =0,73	measures are carainai.
III	the narameters of adaptation are near to threshold value. The matrixes of losses were		

III the parameters of adaptation are near to threshold value. The matrixes of losses were calculated for average parameters of snow intensity and intensity of movement. It is possible to assume, that there are certain combinations of weather and road factors at which parameters of adaptation will exceed threshold values. Researches for this strategy will be continued.