How do we verify a route based forecast?

D.S.Hammond, L.Chapman & J.E.Thornes University of Birmingham, UK

14th Standing International Road Weather Conference 14th May 2008, Prague

Introduction

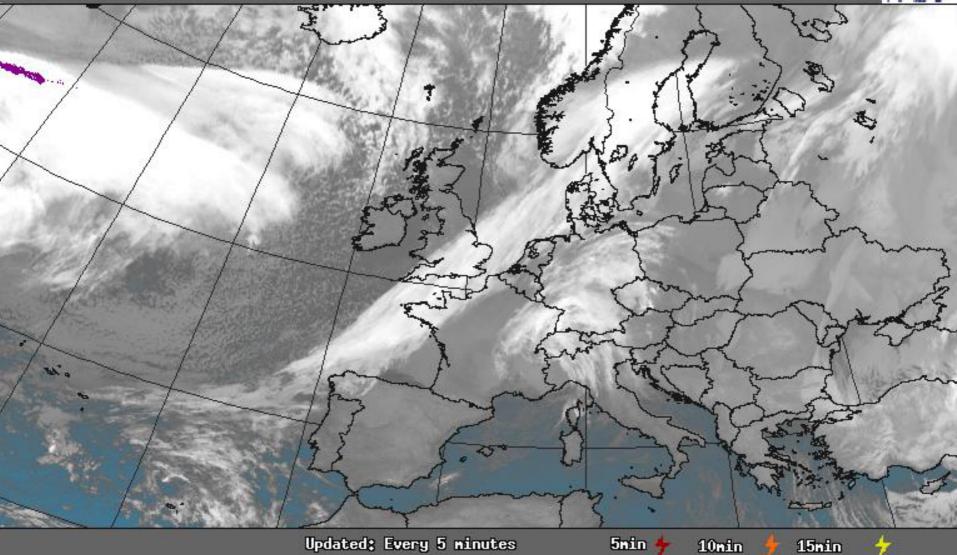
- What is route based forecasting
- Existing Verification Techniques
- Incorporating Existing Verification Technology into the new route based forecasting paradigm
- Statistical Technique using Hierarchical Clustering Case Study from Leicestershire, UK

What is route based forecasting?

"Route based forecasting is a service that delivers individual forecasts of Road Surface Temperature and Road Surface Condition for each salting route within a client's road network." (Hammond, 2008)

What is route based forecasting?

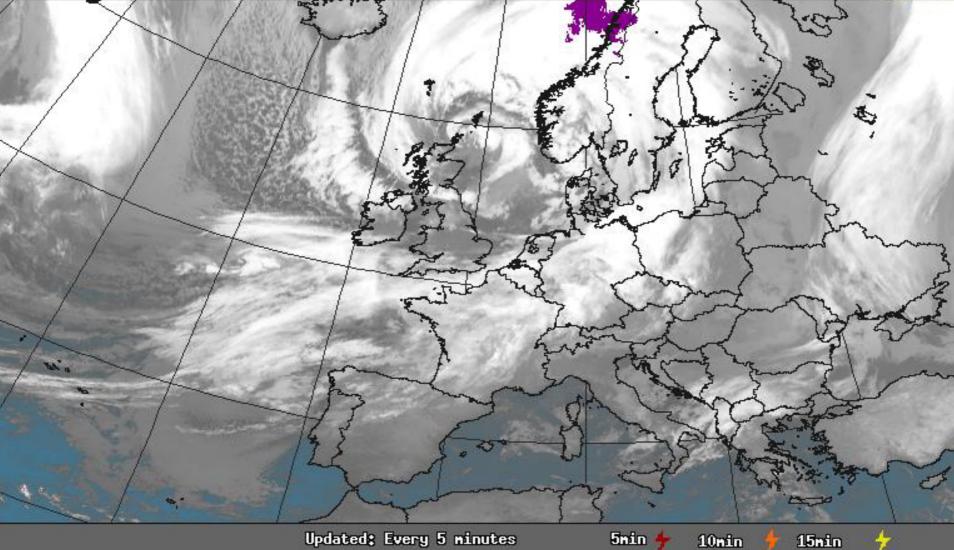
- No longer a site specific forecast with interpolation from thermal maps
- No two nights are the same e.g. the extent to which cloud cover is present at a given geographic location



IR Satellite/Lighting Valid 0535 UTC 22/Jan/08 wst the là Updated: Every 5 minutes 5min 4 10min 15nin

IR Satellite/Lighting

Valid 0505 UTC 30/Jan/08



IR Satellite/Lighting

Valid 2150 UTC 31/Jan/08

What is route based forecasting?

- Route based forecasts model the influence of meteorological, geographical and infrastructure parameters on RST and RSC on a night by night basis
- Route based forecasts aim to resolve rather than simplify a complex reality

Verifying route based forecasts – the current problem

- WSI route based forecasting service forecasts RST and RSC every 50m => 32 forecast points per mile of road!
- Users need confidence that the model can accurately predict RST and RSC at *every* forecast point
- Requires the accuracy of forecasts around routes and away from sensor sites to be verified
- Need to verify the **spatial variation of RST** around routes

Road Outstations

• Traditional verification source for site specific forecasts

Road Outstations

- Calibration issues
- Spot measurement no information on spatial variation of RST
- Spot measurements can be useful for verifying problematic sites within a route based forecast thermal singularities
- Not economically viable to install outstations at all thermal singularities

Remote Infrared Temperature Sensors

- Lower cost
- Solar powered / mobile communications
- Greater network coverage possible

Remote Infrared Temperature Sensors

- Measurement errors due to traffic
- Clear sky algorithms not perfect
- Spot measurement
- Thousands needed to achieve required spatial resolution

Thermal Mapping

- Thermally mapping the road network with a vehicle mounted IR sensor provides a data set describing the variation of RST around a road network
- With strict quality control most errors associated with the technique can be minimised or eliminated altogether
- Technique successfully used for verifying route based forecasts since 2001

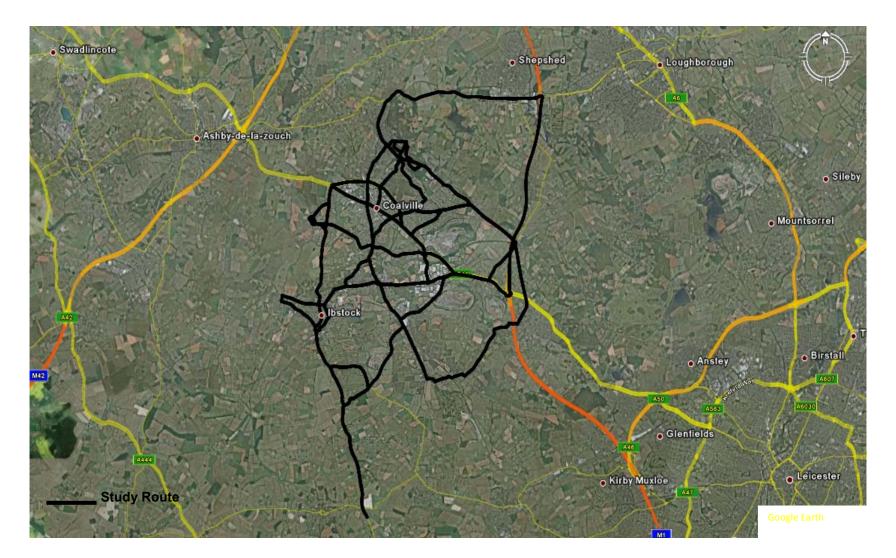
Thermal Mapping

- Thermal mapping is time consuming!
- Surveys restricted to a small time window
- Growing demand for verification data as more highway authorities adopt route based forecasting services

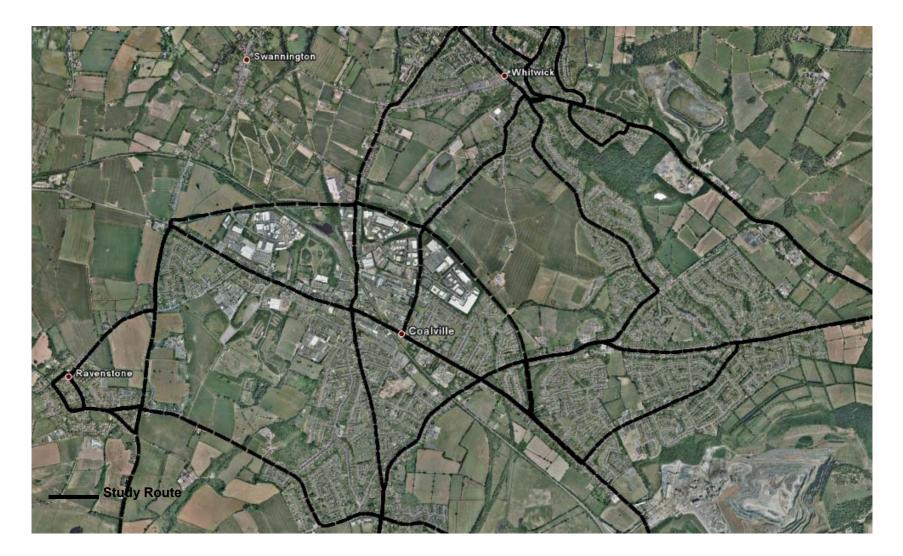
- Increased strain on current resources
- A new robust, reliable, rapid and cost effective verification technique is required

Incorporating existing verification technology into the new route based forecasting paradigm

A statistical approach using Hierarchical Clustering



Why choose clustering?


- WSI's spatial modelling approach takes into account numerous meteorological, geographical and infrastructure parameters
- Possible to group forecast points into clusters
- All points within a single cluster share similar geographical and thermal characteristics
- Potential for shorter survey routes for verification, leading to significant cost and time savings for thermal surveying

The Study Route

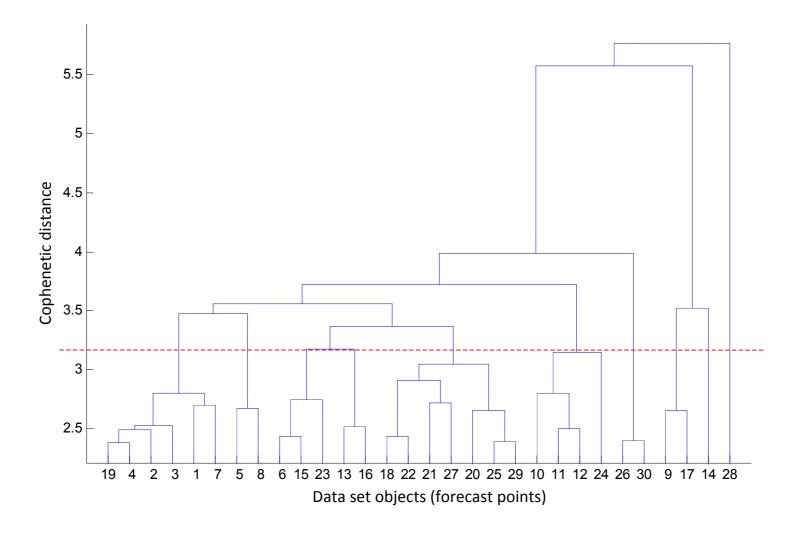
The Study Route

BIRMINGHAM Originalthinking

The Study Route

Verification Data Set

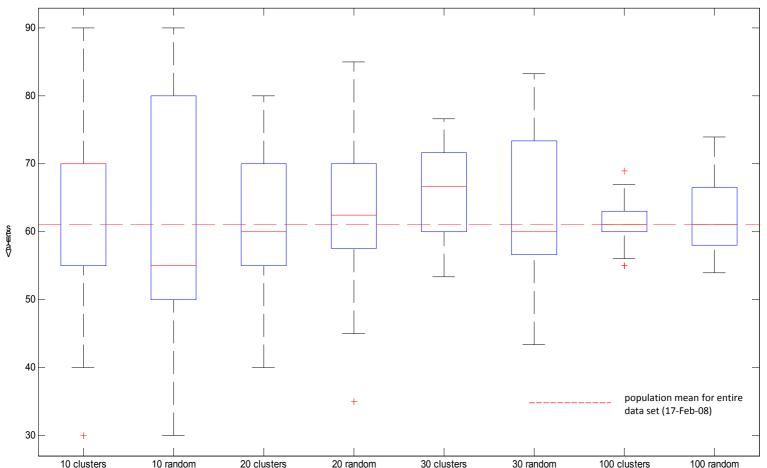
- Study route thermally surveyed on 20 nights between January and March 2008
- Route based forecasts then generated for the study route using WSI's spatial modelling approach



Summary Statistics

Date	Bias	SD of Bias	RMSE	% residual forecast within $\pm 1^\circ C$ of residual actual	SD of thermal data (Stability)
21-Jan-08	1.04	0.78	1.30	82.94	0.78 (Intermediate)
24-Jan-08	0.15	0.93	0.94	67.69	1.09 (Extreme)
29-Jan-08	-2.23	0.66	2.33	88.53	0.70 (Intermediate)
31-Jan-08	0.44	0.80	0.91	79.35	0.87 (Intermediate)
03-Feb-08	-2.44	0.62	2.52	90.49	0.37 (Damped)
08-Feb-08	1.05	0.88	1.37	77.81	0.97 (Extreme)
09-Feb-08	0.68	1.18	1.36	63.73	1.19 (Extreme)
10-Feb-08	0.63	1.21	1.36	60.75	1.23 (Extreme)
11-Feb-08	0.16	1.18	1.19	61.07	1.19 (Extreme)
12-Feb-08	0.15	1.38	1.39	52.45	1.42 (Extreme)
14-Feb-08	-4.24	0.55	4.27	93.38	0.47 (Damped)
15-Feb-08	-0.35	0.89	0.96	73.89	0.75 (Intermediate)
16-Feb-08	-2.75	1.19	2.99	61.68	0.95 (Extreme)
17-Feb-08	-1.12	1.20	1.64	61.07	1.14 (Extreme)
20-Feb-08	-1.40	0.59	1.52	91.00	0.73 (Intermediate)
26-Feb-08	0.94	0.72	1.19	85.78	0.86 (Intermediate)
27-Feb-08	-0.56	0.96	1.11	70.26	1.00 (Extreme)
12-Mar-08	1.44	0.69	1.60	87.09	0.73 (Intermediate)
17-Mar-08	-4.25	0.92	4.35	69.70	0.62 (Intermediate)
18-Mar-08	-1.10	0.98	1.47	68.16	1.08 (Extreme)
Mean	-0.69	0.92	1.79	74.34	

- Forecast & actual RST values for each 50m forecast point were grouped into 10, 20, 30 and 100 clusters
- Metric and clustering algorithms used to link pairs of objects with similar characteristics into binary clusters
- Newly formed binary clusters then linked to other objects to create larger clusters until all objects in the original data set are linked together in a hierarchical tree



For each set of clusters (10, 20, 30 & 100):

- 20 corresponding forecast and surveyed RST values were chosen from each cluster at random **clustered values**
- A further 20 corresponding forecast and surveyed RST values were chosen at random from the entire data set – random values
- Statistical analysis of forecast accuracy then carried out for the clustered and random values and compared with the statistics for the entire data set

% RESIDUAL FORECAST WITHIN 1DEG C OF RESIDUAL ACTUAL

Conclusions

- With 100 clusters a route based forecast can be verified with a good degree of accuracy – potential cost savings for thermal surveying
- Further research required to fully test the robustness of such a technique
- Outstations / remote infrared sensors useful for verifying forecast models at locations identified as thermal singularities
- Statistical techniques are certainly worth further investigation clustering, dimensionality reduction

References

- [1] Chapman, L., Thornes, J.E. & Bradley, A.V. (2001a) Modelling of road surface temperature from a geographical parameter database. Part 1: Statistical. *Meteorological Applications*. **8**: 409-419.
- [2] Chapman, L., Thornes, J.E. & Bradley, A.V. (2001b) Modelling of road surface temperature from a geographical parameter database. Part 2: Numerical. *Meteorological Applications*. **8**: 421-436.
- [3] Chapman, L. & Thornes, J.E. (2005) The influence of traffic on road surface temperatures: implications for thermal mapping studies. *Meteorological Applications*. **12**: 371-380.
- [4] Chapman, L. & Thornes, J.E. (2006) A geomatics-based road surface temperature prediction model. *Science of the Total Environment*. **360**: 68-80.
- [5] Chapman, L., Handa, H., Yao, X. & Thornes, J.E. (2006) Salting Route Optimisation Using XRWIS and Evolutionary Computation. *Proceedings of the 13th International Road Weather Conference, Turin, Italy, March 2006. SIRWEC* 149-155.
- [6] Gustavsson, T. (1999) Thermal mapping a technique for road climatological studies. *Meteorological Applications*. **6**: 385-394.
- [7] Lindqvist, S. (1976) Methods for detecting road sections with high frequency of ice formation. *GUNI-Report 10, Department of Physical Geography, University of Göteborg*.
- [8] Prusa, J.M., Segal, M., Temeyer, B.R., Gallus, W.A. & Takle, E.S. (2002) Conceptual and scaling evaluation of vehicle traffic thermal effects on snow/ice covered roads. *Journal of Applied Meteorology*. **41**: 1225-1240.
- [9] Shao, J., Swanson, J.C., Patterson, R., Lister, P.J. & McDonald, A.N. (1997) Variation of winter road surface temperature due to topography and application of Thermal Mapping. *Meteorological Applications*. **4**: 131-137.
- [10] Shao, J. (1998) Improving nowcasts of road surface temperature by a back propagation neural network. *Weather and Forecasting*. **13**: 164-171.
- [11] Thornes, J.E. (1991) Thermal mapping and road-weather information systems for highway engineers. In A.H. Perry & L.J. Symons (eds.), *Highway Meteorology*, London, E & FN Spon, 39-67.
- [12] Thornes, J.E. & Shao, J. (1991) Spectral analysis and sensitivity test for a numerical road surface temperature prediction model. *Meteorological Magazine*. **120**: 117-123.
- [13] White, S. (2007) The route treatment. *Surveyor Magazine*. 30 August 2007: 12-14.
- Zwahlen, H.T., Russ, A., Badurdeen, F. & Vatan, S. (2003) Evaluation of ODOT Roadway/Weather Sensor Systems for
 and Ice Removal Operations Part II: RWIS Pavement Sensor Bench Test. The Ohio Department of Transportation
 Office of Research & Development, FHWA Report Number: FHWA /OH-2003/008B.

