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ABSTRACT 

The road traffic is considered as a non-autonomous dynamic phenomenon and modelled 
statistically by a non-parametric approach. Information for the modelling is extracted from 
recorded time series of traffic flow rate. The time is represented by the hour and a day-code 
variable specified by the calendar. An optimal predictor of the traffic flow generator is 
formulated in terms of conditional average estimator. The condition is comprised of hour, 
day-code and several data of past flow rate. As an example the traffic flow rate at a 
representative point on a Slovenian high-way is modelled. Seasonal variation is taken into 
account by using in the modelling just one month long interval of the past flow rate record. 
The model is utilized to forecast traffic flow rate. Applicability of the method is evaluated by 
the correlation coefficient r of the forecasted and original data. The mean value <r>~0.95 
indicates rather good modelling. The performance of forecasting depends on the combination 
of variables representing the condition. The graph of r versus the number of condition 
components exhibits a maximum that determines an optimal combination of components. By 
the hour and day-code variables the mean traffic flow rate record over a week is determined. 
Its structure is described by a superposition of normal distributions whose parameters 
represent new information about the traffic phenomenon and activity of population.  
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1. INTRODUCTION 

Road traffic is a consequence of population activity to which many agents participate. In spite of this, the traffic 
flow does not exhibit completely random character because the population activity is synchronized to a high 
degree. The synchronization is stimulated externally by changing properties of the environment, as well as 
internally by social agreements about working days and holidays. The external stimulation can be physically 
described by the time and weather variables, while the internal one has to be modelled by some specific 
dynamic law. In agreement with these properties we consider the road traffic flow as a non-autonomous 
dynamic phenomenon and describe its generating equation statistically by a non-parametric model. The basic 
information for the creation of the model can be extracted from records of traffic flow rate and related 
environmental variables. For this purpose a statistical method is formulated in the next section, while in the 
subsequent one the applicability of the method is demonstrated by predicting the traffic flow rate at a 
representative point of a high-way in Slovenia. From results of this example the performance of the proposed 
method is quantitatively described in terms of the correlation coefficient between predicted and original values 
of traffic flow rate. Examination of the correlation coefficient dependence on the structure of the condition 
indicates how the method can be tuned to a specific case of modelling. The final goal of our approach is to 
provide for a quantitative forecasting of traffic flow rate that is needed for an efficient information support to 
participants in road traffic [2]. 
  

2. THEORETICAL BACKGROUND 

The traffic flow can be quantitatively characterized by the rate Q(t) of vehicles passing a certain observation 
point in dependence of time t [2]. Corresponding time series {Q(t), Q(t-1), Q(t-2),…} are recorded by counters 
at representative points of a road-network, while weather observation and forecasting services provide time 
series of various environmental driving variables {V(t), V(t-1), V(t-2),…}. Joint time series {Q(t), Q(t-1),…; 
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V(t), V(t-1),…} comprise a data-base about complete traffic phenomenon. Since the information presented by 
such a data-base is usually too complex for a direct application by participants in the traffic, some pre-
processing is needed. At various applications the question: "What would be the traffic load in the near future?" 
appears often, therefore we try to answer it by following the method of chaotic time series modelling that was 
previously successfully applied for prediction of energy consumption [1], [3], [5-6]. Similarly as traffic activity, 
the energy consumption is also a consequence of population activity, and consequently we presume that the 
same method would yield good results also in the case of traffic. 

Driving variables V influencing the traffic flow usually do not depend on the flow itself and therefore we treat 
the flow as a non-autonomous dynamic phenomenon of chaotic character. The theory of chaotic dynamics 
suggests us to describe the generating process of the corresponding time series by a mapping relation [1]: 

))(),...,1(),();(),...,2(),1(F()( ττ −−−−−= tVtVtVtQtQtQtQ .                                               (1) 

It joins the flow rate at time t with the flow rate and driving variable V in previous times {t, t-1,t-2,…}. The 
basic problem of time series modelling is to estimate the generating function F(...)  from a given record. For 

this purpose we first estimate the probability density function (PDF) of measured variables and use it to express 
the generating function by an optimal statistical predictor [1]. With this aim we describe the traffic by the state 
vector S = (Q(t),Q(t-1),…,Q(t-τ);V(t), V(t-1),…,V(t-τ)) that joins the flow rate Q at various moments with the 
corresponding driving variable V. We consider S as a random vector variable whose properties can be generally 
characterized by some probability density function f(S). For this purpose we extract from given records N 
representative samples {Sn ; n=1,…, N}. Based on them we express f(S) by the Parzen’s kernel estimator [4] 
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The kernel ),( σnw SS −  denotes an approximation of the delta function, for example the Gaussian or the 

Lorenzian one, while σ  represents the distance between samples Sn. 

Assume next that some component P of the state vector depends on the remaining components R of S. We 
proceed to the estimation of the corresponding functional relation P(R) statistically by following the concept of 
minimal estimation error [1]. The resulting optimal statistical estimator is the conditional average:  

[ ]RR |E)(ˆ PP =                                                                                                                                         (3) 

E[ | ] denotes the conditional mean value and R the condition. After expressing the conditional average by the 

probability density function Eq. (2) , we express the estimator )(ˆ RP in terms of samples Sn = (Pn , Rn ) as: 
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This estimator has already been applied for modelling of various chaotic time series and corresponds to a 
normalized radial-basis function neural network [1], [3]. In order to use it in modelling of traffic flow rate, we 
consider again Eq. (1) and interpret variables on its right side as the condition:  

))(),...,1(),();(),...,2(),1(( ττ −−−−−= tVtVtVtQtQtQR ,                                                     (5) 

while the variable on the left side as the value of the flow rate P=Q(t) which we want to predict. Equations (3) 
& (4) are then readily applicable for this purpose. However, at a selected time t we have to provide the variables 
comprising the condition that is represented by the truncated sate vector R. If we want to forecast a sequence of 
flow rate in the more distant future, we can repeat the complete procedure for the next time step with the 
forecasted value included into the condition and with new values of other variables comprising the condition.  
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Before the application of the proposed method we must specify the dimension of the state vector S by the value 
of parameterτ . Since its is generally not known in advance how many past values have to be utilized in 
modelling, we can proceed to a proper value of τ by observing the performance of the forecasting at increasing  
values of τ . For this purpose it is of advantage to describe the performance quantitatively by the correlation 
coefficient r between predicted and measured time series of the traffic flow rate.  
  

2. EXAMPLE OF MODELLING AND FORECASTING 

For our demonstration we utilize records of traffic flow rate collected by automatic counters on Slovenian roads in 
one hour time intervals over the year 2007 and published by the Slovenian Roads Agency on a CD: ISSN-1580-
3864. As a representative example we arbitrary selected the record from the counter 822 on a high-way from 
Ljubljana to Postojna. The record presents data about physical time of measurements and flow rate of various 
categories of vehicles. The time was transformed to a periodic variable that is uniformly increasing from 0 to 24 
over each day. More demanding is a proper transformation of time to a proper day-variable. Analysis of electrical 
power and natural gas consumption has revealed [3], [5], [6] that phenomena depending on population activity 
essentially depend on the character of the day which we also consider here as the driving variable of the traffic. 
We describe the character of the day quantitatively by a code defined by the following rule: Monday – 1, day after 
holiday or weekend – 2, normal working day – 3, Friday – 5, day before holiday or weekend – 6, Saturday – 7, 
Sunday – 9, holiday – 10. The resulting distribution of the day-code variable over the year 2007 is shown in Fig. 
1.  Among various categories of vehicles we consider the category ‘personal cars’ since it is the most numerous. A 
record of its flow rate is shown in Fig. 2. 

 

 

Figure 1. Distribution of the day-code in the year 2007. 

 
Figure 2. Record of the traffic flow rate Q(t) in the year 2007. 

 

The record reveals rather regular seasonal variation of flow rate over the year. The traffic activity culminates in 
the summer due to contribution of tourists travelling on the high-way from Ljubljana to the Adriatic seaside. In 
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the modelling, stemming from a one-year record, the influence of seasonal variation can be accounted for by 
forming the model based upon shorter intervals. In our treatment we use a record spanning one month.  
 
Beside seasonal variation, the record exhibits rather regular variation of traffic flow in normal working days and 
rather irregular variations in days around holidays. The most outstanding irregularities are observed around May 
1st, November 1st and the end of a year, when many people try to join weekends with holidays by going on leave. 
To demonstrate this remarkable property we consider here two characteristic examples that correspond to a 
normal week and the week around holidays. The first one is the week No. 16 spanning from April 16 to 22, 
while the second one is the week No. 18 from April 30 to May 6 which includes two holidays. Graphs of all 
characteristic variables are shown in Fig. 3 for both cases. When forecasting the flow rate shown in these graphs, 
the condition in the model was comprised from the day-code and the hour variable alone.  

 

Figure 3. Graphs of characteristic variables in a normal week No.16 (left) and in a week No.18 (right) that 
includes May 1st and 2nd. The step-like and saw-like curves represent the day-code and the hour. The dotted 
curve shows the original, while the solid one shows the corresponding predicted record of traffic flow rate. 

  

Figure 4.  Correlation plots of predicted Qp versus original Qo flow rate corresponding to the normal week (left) 
and the week with holidays (right). 

4. DESCRIPTION OF THE MODELLING PERFORMANCE 

 
The agreement between predicted and original records of traffic flow rate given in Fig. 3 is quantitatively 
demonstrated by the correlation plots in Fig. 4. The horizontal and vertical axes represent original Qo and 
predicted Qp flow rate respectively. To each hour of a week there corresponds a point (Qo,Qp) in the graph. 
From the distribution of points the correlation coefficient r and the linear regression line (solid) were determined. 



           ID: 50 

Sirwec 2008, Prague, 14 - 16 May 5 

The dotted line represents an ideal agreement between original and predicted data. The value of correlation 
coefficient r and the agreement between regression and dotted line indicates the quality of forecasting. The 
values r = 0.98 and r=0.88 correspond to the normal week and the week with included holidays, respectively. 
The main reason for a worse prediction in the week with embedded holidays is an absence of a similar holiday 
in the data-base used in modelling of the flow generator. Research of energy consumption has shown that the 
prediction during holidays could be improved by using records from various years [3], [5-6].  
 
The presented examples correspond to rather extreme properties of traffic flow. In order to demonstrate the 
mean performance of forecasting, we use the plot of correlation coefficient over the year that is shown on the 
left side of Fig. 5. The corresponding mean value <r>=0.94 indicates that the modelling and forecasting is on 
average quite successful. However, the prediction is rather good in “normal” days while it is worse during 
holidays. We conjecture that the influence of weather conditions is much more expressed during holidays, since 
then the population activity is mainly determined by travelling, sporting and relaxation engagements of the 
population.  Therefore, we suppose that the traffic flow rate in a short time interval before the prediction 
exhibits the influence of existing weather, and expect that the performance of the forecasting could be improved 
by including the corresponding data into the condition.    

 

Figure 5. The correlation coefficient between predicted and original flow rate over the year 2007. The left record 
is obtained by using just the day-code and hour variables as the condition, while the right one is obtained by 
considering also the value of flow rate before the prediction. 

In order to prove our conjecture we have changed the composition of the condition R by including into it also 
several past components of traffic flow Q. By analysing the forecasting performance of models with various 
numbers of included past flow rate values, we have found that the best model is obtained by including just the 
final value of traffic flow rate before the prediction. For this case the dependence of the correlation coefficient 
on time in the year is shown by the right graph in Fig. 5. The corresponding mean value <r>=0.95 is not 
significantly higher in this case, but it is of advantage that the correlation coefficient fluctuates less over the year 
than in the previous case. It is a bit surprising, that inclusion of more past data of flow rate again diminishes the 
performance. This effect is shown in Fig. 6.  

 
Figure 6. Dependence of the correlation coefficient on the number of past flow rate values in the condition. 
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4. MODELLING OF TRAFFIC FLOW RATE BY NORMAL DISTRIBUTIONS 

 
Introduction of the hour and the day-code variables provides a proper tool for the analysis of traffic phenomenon 
and related population activity. Using both variables as the condition, we can simply extract from an arbitrary 
selected time interval of a given data base the mean flow rate for each hour and type of the day. By composing 
corresponding data we obtain a mean record of flow rate over a week. Fig. 7 shows two examples of such 
records corresponding to a “normal week” without holidays. The record on the right side represents the traffic at 
the previously mentioned point on the high-way in Slovenia, while the right one represents the traffic in the 
vicinity of Helsinki in Finland.  
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Figure 7. Distribution of a normalized mean traffic flow rate in normal weeks of the year 2007 determined from 
data from Slovenia (left) and Finland (right). The normalized traffic activity is defined as:  A=<Q(t)>/<Q(t)>max. 

Dotted line - original data, and the solid line - data determined by a normal superposition model.  
 

 
In spite of an expressive difference between both records, their structure exhibits a remarkable common 
property. In both cases the complex distribution of the flow rate over each particular day indicates that it is 
comprised of several more elementary distributions resembling a normal one. Based upon this observation we 
have tried to describe analytically the distribution in a particular day by a superposition of normal (Gaussian) 
distributions: 
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Parameters dkdkdk STA ,,  represent the amplitude, the mean value and the standard deviation of the k-th 

Gaussian distribution component in the day indicated by index d, and K denotes the number of normal 
components comprising the superposition, while C  is an additive constant. All parameters can be adapted 
mathematically by minimizing the discrepancy between the superposition of Eq. (6) and the actual distribution. 
However, few attempts are needed to determine them approximately based upon visual inspection of a given 
record. According to this, we have found the following parameters of the superposition for both characteristic 
examples. 
 
 
4.1 Parameters of normal superposition for data from Slovenia  
 
Parameters are: T1=9.9h, T2=17.6h, S1=2.7h, S2=3.1h, C=0.03 are constant while amplitudes are variable, as 
shown in Table 1. 
 

 Mon Tue Wed Thu Fri Sat Sun 
A1 1.0 1.0 1.0 1.0 1.0 2.0 1.5 
A2 1.0 1.0 1.0 1.0 1.8 1.1 0.9 

 
Table 1. Amplitudes of normal superposition for data from Slovenia.  
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4.2 Parameters of normal superposition for data from Finland  

 
Parameters S3=4.0h and C=0.015, are constant while the other ones are variable, as shown in Table 2. 
 
 

 Mon Tue Wed Thu Fri Sat Sun 
A0 0.32 0.32 0.32 0.32 0.32 0.35 0.22 
A1 0.35 0.35 0.35 0.34 0.33 0.05 0.08 
A2 0.72 0.75 0.75 0.68 0.71 0.02 0.12 
T1 8.40 8.40 8.40 8.40 8.40 12.0 13.5 
T2 17.2 17.2 17.2 17.2 17.2 17.5 19.0 
T3 14.0 14.0 14.0 14.0 14.0 15.3 15.0 
S1 1.25 1.25 1.25 1.25 1.25 1.65 1.65 
S2 1.50 1.50 1.50 1.50 1.70 2.30 2.30 

 
Table 2. Parameters of normal superposition for data from Finland. 

 
 
It is characteristic the data from Slovenia could be quite well described by using in each day just two normal 
components with equal amplitudes and widths, and different mean values in the morning or in the afternoon. 
The parameters of these components are approximately constant for working days from Monday to Thursday, 
while they differ for Friday, Saturday and Sunday. In Fig. 7 the original data are shown by the dotted line, while 
the data determined by the superposition are shown by a solid one. Similarly, the records from Finland could be 
described, however with different parameters. In this case we have found that an additional normal component 
with mean value at noon significantly contributes to the accuracy of the model. In this case the parameters of 
three components in the days from Monday to Friday are approximately constant, while they differ in Saturday 
and Sunday. In both cases the constant C does not represent a significant contribution. 
  
Rather good agreement of original and modelled data indicates that the normal superposition quite successfully 
represents some basic properties of observed traffic flows. We conjecture that each normal component of the 
superposition represents a synchronized activity of some group of population and expect that the corresponding 
characteristic parameters could be also determined based upon a proper sociological research.   
 

 

4. CONCLUSIONS 
 
Our goal was to develop a simple statistical method for modelling and forecasting of traffic flow rate. We have 
found that the conditional average estimator is applicable for this purpose since it does not require any analytical 
modelling of traffic flow. Consequently, the complete structure of the corresponding model stems from recorded 
data. The developed method is therefore rather generally applicable. For instance, we have obtained similar 
prediction performance as on data from Slovenia also on data obtained from Finland. The main problem at the 
application of the proposed method is to describe the character of the day by a proper code. In spite of 
diminished prediction performance caused by less predictable population activity during holidays, the mean 
value of correlation coefficient <r>~0.95 indicates that the developed statistical method is quite applicable for 
forecasting. Beside rather good forecasting, the introduced driving variables that represent the hour and day-
code also render possible a simple description of traffic flow by a superposition of normal distributions. 
Parameters of components in the superposition can be applied for a reduced representation of traffic flow 
dynamics, while a proper interpretation of this property still awaits more profound sociological examination of 
population activity.  
 
It is clear that the population activity is not synchronized just by the hour and character of the day, but also by 
the environmental conditions determined by variations of weather. Until now we have tried to account this effect 
by including the past flow rate into the condition. But the proposed method permits rather simple inclusion of 
weather variables directly into the condition of the model as well. Even more, weather conditions predicted by 
various weather observation services could provide for still more reliable forecasting of traffic flow in the near 
future. Therefore, this possibility is now further investigated.  
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