

Optimized traffic control with benchmarked road weather data

Slavica Grošanić, Technische Universität München Alexander Dinkel, TRANSVER GmbH Munich Sylvia Piszczek, BASt – Federal Highway Research Institute

GERMAN TEST SITE FOR ROAD WEATHER STATIONS

CHAIR OF TRAFFIC ENGINEERING AND CONTROL Univ.-Prof. Dr.-Ing. Fritz Busch

GERMAN TEST SITE FOR ROAD WEATHER STATIONS

Situated on motorway A92 near Munich Airport

- Evaluation of different sensor systems from various companies under same weather conditions
- → Published in annual reports (http://www.vt.bv.tum.de/abschlussbericht)
- Development of plausibility checks for aggregated weather data:
 - Single Measurement checks
 - Logical-physical coherence checks
 - Long-term plausibility checks
- \rightarrow Published in a technical bulletin (2010) [FGSV, issue 306]
- Integration of plausibility checks into traffic control centres
- Implementation of automatic plausibility analysis for aggregated data
- \rightarrow Data Distribution Tool

BENCHMARKING CONCEPT

Conventional traffic control set-up according to German Technical Bulletin

0.25

FAILURE MODE AND EFFECTS ANALYSIS (FMEA)

Concept: failure prevention instead of error correction

POTENTIAL ERRORS: MEASUREMENT RANGES

Definition of risk priorities of failure modes:

RPN = O * S * D

Rating	Occurrence (O)	Severity (S)	Detection (D)	
10	Very high:	Very critical:	Unlikely:	
9	Frequent failure	Direct influence on traffic control	No plausibility check available	
8	High:	Critical:	Incidental detection	
7	Repeated failure	Indirect influence on traffic control	at service work	
6	Moderate:	Moderate:	Plausibility check or	
5	Occasional failure	Influence on plausibility check	Information from road	
4		of a primary measurement	users/police	
3	Low:	Influence on plausibility check	Few plausibility checks	
2	Relatively few failures	of a secondary measurement	available	
1	Unusual failure	No influence on traffic control	Evident failure	

high RPN: high importance, high priority additional check of single highly ranked factors

PRIORITY AND USAGE OF MEASUREMENT PARAMETERS

DETAILED RPN CALCULATION

Detailed analysis of single measurements concerning the possible failure types and plausibility checks

measurement unit: visibility	0	S	D *	RPN			
random error / systematic error							
relevant time period							
measurement value is too high	4	6	8	192			
measurement value is too low	2	4	5	40			
relevant measuring range for traffic control							
measurement value is too high	4	7	8	224			
measurement value is too low	2	5	5	50			
not relevant time period							
measurement value is too high	4	4	8	128			
measurement value is too low	2	2	5	20			
not relevant measuring range for traffic control							
measurement value is too high	4	5	8	160			
measurement value is too low	2	3	5	30			
missing data							
relevant time period	10	1	3	30			
not relevant time period	9	1	3	27			
*dynamic adaptation; here the range of most of the failure is shown							

Is the measured data..

- within the relevant time period?
- within the range for traffic control?
- too high or too low?

How many plausibility checks identified erroneous data?

- Risk factors are set every minute and a new RPN is calculated
- classification of RPN based on the experiences from the German Test Site

ONLINE QUALITY MONITORING USING SERVICE LEVELS

- Service-Levels are uniform agreements on the desired quality of data and equipment
- Disturbances are identified promptly
- Using Service-Levels helps to detect:
 - failure of equipment
 - low data quality
 - lack of data
- Example: Service-Level on the quality of data:

Classification of service levels

- Data are completely plausible
- Data are largely plausible
- Data are not plausible
- No information on quality of data
- System "tracks" the "history" of a reported error until successful removal of the cause

CONCLUSION AND OUTLOOK

- Development of benchmarking system to maximize benefits from plausibility checks
- Improvement of interpretations and decisions
- Proposal of appropriate reactions on individual errors and disturbances
- Next steps:
 - Implementation of benchmark system
 - Software implementation of schematic procedures

EXPECTED BENEFIT

- Enhancement of the acceptance of traffic control systems
- Increasing of traffic safety on motorways during adverse weather situations

THANK YOU FOR YOUR ATTENTION

Slavica Grošanić, <u>slavica.grosanic@vt.bv.tum.de</u> Alexander Dinkel, <u>dinkel@transver.de</u> Sylvia Piszczek, <u>piszczek@bast.de</u>

