

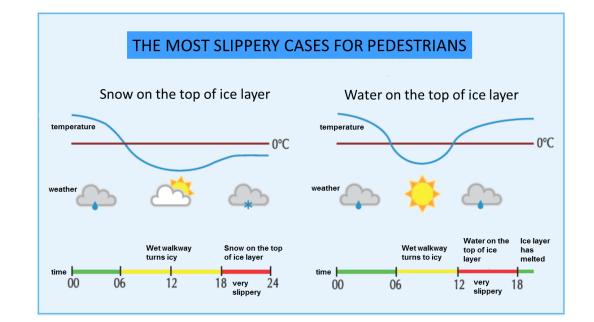
Monitoring slipperiness on walkways

Marjo Hippi Finnish Meteorological Institute

23rd May 2012

Background

- Lot's of slipping injuries happen for pedestrians → big economic problem → the number of slipping accidents need to be reduced
 - Around 50 000 slipping accidents requiring medical attention happen in Finland annually
 - two-thirds of injuries happen when walkways are covered by ice and/or snow
 - Slipping injuries can be severe for older people
 - Costs of slipping accidents are about 2400 million euros in Finland annually. This amount includes costs in health care, lost workdays and welfare
 - The economical loss is bigger in case of pedestrian slipping accidents than traffic accidents


Background

- FMI has developed a pedestrian pavement condition model to simulate slipperiness on walkways
- No slipperiness observations available → Not possible to do verifications, also model development difficult
 - The peak days of slipping injuries used as an indicator of slippery pavement condition
 - More information available on poster ID 61
- The condition of pedestrian pavement seems to be more challenging to predict than the condition of highways
- Pavement condition may vary dramatically even within short distances

Slippery walkway condition

- Car traffic has typically problems in case of snowfall
 → low visibility and reduced friction
- New snow means usually good grip for pedestrians (if no ice below the snow)
- The most difficult walkway conditions are:

Friction measurement devices

- There are several devices and techniques available to measure friction for different purposes
- But friction on walkways is not that commonly measured or studied

Portable Skid Resistance Tester

ASFT2GO

Portable Friction Tester (PFT)

Traction Watcher One

Friction measurement devices

 FMI has tested two devices which measure slipperiness on walkways

Vaisala DSC111 optical sensor

- Two sensors installed in Helsinki
- Observations from winters
 2010/11 and 2011/12

Slipmeter developed by Finnish Institute of Occupational Healthy

One case study measurement

Vaisala DSC111 instrument

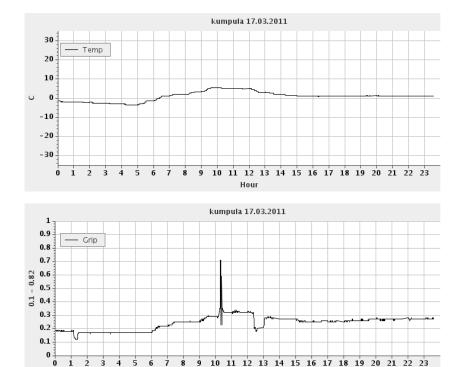
- Measures optically thickness of water/snow/ice on the surface
- Classifies the road surface condition into following classes: dry, damp, wet, snowy, icy
- Gives an estimation of prevailing friction
- Used to monitor highways along the Finnish road network for several years

Slipmeter developed by Finnish Institute of Occupational Healthy


- Simulates stepping
- Different footwear can be tested
- Different stepping force can be tested
- As a result: friction between surface and shoe sole

Measurements between DSC111 and FIOH's slipmeter on 17th March 2011

- Snow was taken to the test site and packed by stepping day before
- Two shoe soles were tested with the slipmeter
 - A: shoe sole with good grip
 - B: very slippery shoe sole (like curling shoe)


Measurements between DSC111 and FIOH's slipmeter

Measurement	Shoe A	Shoe B
#1	0.33	0.10
#2	0.24	0.09
#3	0.16	0.11
#4	0.26	0.09
#5	0.31	0.07
Mean	0.26	0.09
SD	0.17	0.02

Friction measured by slipmeter

Measured friction was around 0.3 with shoe A and DSC111 instrument

Friction measured by DSC111 (error peak caused by people on the test site)

Hou

Results

FIOH's slipmeter

- Good device to measure slipperiness on walkways
- Uneven surface disturbs consecutive measurements
- Cannot be used operationally

• Vaisala DSC111 device

- Easy to install and use
- Gives continuously low values for friction in case of lot of ice on the surface
- In case of thin layer of ice more reliable results
- Affect of gritting unknown

Conclusions

- The condition of pedestrian pavement seems to be more challenging to predict than the road condition of highways
- Big economical loss caused by slipping accidents
 - The number of slipping accidents need to be reduced
- Problem how to measure slipperiness on walkways operationally need to be solved