

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Observed and future changes of extreme winter events in Europe with implication for road transportation

<u>Andrea Vajda</u>, Heikki Tuomenvirta and Pauli Jokinen

Finnish Meteorological Institute

16th International Road Weather Conference, Helsinki, May 23-25, 2012

Extreme OR adverse weather events?

Temperature distr. at a station in Finland (50 years, c. 55000 observations)

Objectives

➤ To provide a comprehensive analysis of adverse and extreme winter weather events over Europe relevant to the transport system with primary focus on recent decades (1971-2000) by

 \rightarrow estimating the frequency/probability of phenomena

 \rightarrow describing the spatial variation of severe events

 \succ To assess the projected changes in the severe winter phenomena in the future climate until 2070

Extreme Weather Impacts on European Networks of Transport WP 2: Probabilities of Extreme Weather Affecting Transport in Europe – Climatology and Scenarios up to the 2050s

Winter phenomena

Area covered: Lat: 32°N – 72°N Long: 25°W – 45°E

 1^{st} threshold \rightarrow Adverse impacts to the transport system may start to occur.

 2^{nd} threshold \rightarrow Some adverse impacts are likely. Their severity depends on the resilience of the transport system. 3^{rd} threshold \rightarrow Weather phenomenon is so severe that it is virtually certain that some adverse impacts will occur.

Impact indices

For details on threshold definition please check the poster: Juga I. & Vajda A.: Assessing the impact thresholds for adverse weather phenomena ID:0042

Probability and frequency of daily snowfall (1971-2000)

≥1 cm

≥ 10 cm

≥ 20 cm

Average number of days/winter (DJF) with wind gust exceeding

≥ 17 m/s

- high frequency over western coastal region \rightarrow exposure to the Atlantic storms
- gusts \geq 32 m/s inexistent over the continent

How well is the maxima estimated in ERA-Interim?

- large scale variability described fairly well
- smaller temporal/spatial scale phenomena deficient

Observed gust vs. ERA-Interim gusts during 1990(97)-2009 + Sep-Apr + May-Aug

Ref: Vajda et al. 2012

Total number of blizzard events during 1989-2010

BOREAL SUMMER

Winter and summer (A) mean surface air temperature (°C) and (B) mean precipitation (mm/dav) change for the

What are the projections for the adverse/extreme winter events?

multi-model ensemble mean

BOREAL WINTER

BOREAL SUMMER

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Multi-model ensemble regional climate simulations of extreme weather events from 1971 until 2070

6 RCMs produced in the ENSEMBLE project

- \rightarrow driven by 3 GCMs
- \rightarrow A1B emission scenario (medium, non-mitigation)
- \rightarrow 0.22° (25 km) resolution

SMHIRCA-FCHAM5-r3 **SMHIRCA-BCM** SMHIRCA-HadCM3O3 KNMI-RACMO2-ECHAM5-r3 MPI-M-REMO-ECHAM5-r3 C4IRCA3-HadCM3O16

Time periods: 2011-2040, 2041-2070

lat = 50.7500, pollon = -162.000, pollat = 39.250

Major uncertainties due to \rightarrow natural climate variability \rightarrow model uncertainties

- Multi-model mean: the mean change of six models compared to the main period, for all the thresholds
- For each grid point is shown the range of changes, i.e. upper limit and lower limit.

^{0.22} degree (25km) grid mesh

Changes in annual cold spell days from 1971-2000 to 2041-2070

S⁰ **O S**

≤ -20 °C

- The largest changes at high latitudes
- As many frost days in Scandinavia by 2050s as in some mid-latitude countries in the present climate
- Good agreement among the 6 RCMs on the variation of upper and lower limits

-50 -40 -30 -20 -10 -5 -1 -0.1 0.1 1 5 10 20 30 40 50

Changes in wind gust (top) and blizzard (bottom) days

≥ 25 m/s

≥ 32 m/s

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Summary map of the mean changes / European regions

ILMATIETEEN LAITOS

Risk indicators for road transportation (present climate)

Risk = f (Hazard, Vulnerability)

V = f (exposure, susceptibility, coping capacity)

Exposure

-Amount of passenger and freight

- Population density

Susceptibility - Index of infrastructure quality

Coping capacity - Gross domestic production (GDP)

Reference:

EWENT D.5.1 Risk panorama - Extreme weather hazards and vulnerability of European transport network

Conclusions

> Problems with the climate data: temporal/spatial resolution, reliability, "non-existent" \rightarrow *Improvements in data collection and exchange are needed*.

> The frequency and intensity of adverse and extreme winter phenomena is the highest in Northern Europe and Alpine regions \rightarrow *The severity of disruptions and damages caused by these phenomena highly depends on the climatic zone and preparedness of the country.*

➤ The projected changes are expected to have both negative and positive impacts on road transportation:

- → Snow events are likely to become rarer by the 2050s. However, frequency of heavy snowfalls may increase over Scandinavia
- \rightarrow Robust decrease in the probability of cold spells
- \rightarrow The projections are less coherent with regard to extremes in wind and blizzard

> Uncertainty in climate projections are relatively large. In addition, some regions may have to deal with increasing variability (heavy snowfall) \rightarrow Large challenges for risk management and climate change adaptation. Besides old solutions new innovations are needed.