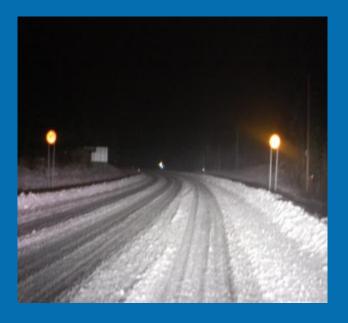


ID: 0022

DECISION SUPPORT SYSTEM FOR VARIABLE SPEED REGULATION

Patrik Jonsson patrik.jonsson@miun.se



VARIABLE SPEED REGULATION

Installed in Sweden at 20 roads Results are:

- Less accidents
- Lower speeds
- Improved accessibility

VARIABLE SPEED REGULATION IN SWEDEN

Traffic situations addressed are:

- Intersections
- Dense traffic and cue's
- Unprotected Traficant's
- Dangerous road conditions

VARIABLE SPEED REGULATION RESULTS

- Traficant's have better compliance of variable speed limits compared to fixed speed limits
- Low variable speed limits are well accepted
- 70% to 90 % states that the system is reliable
- 80% states that they are more observant of road conditions when variable speed limits are in use

Swedish transport administration publication 2008:14

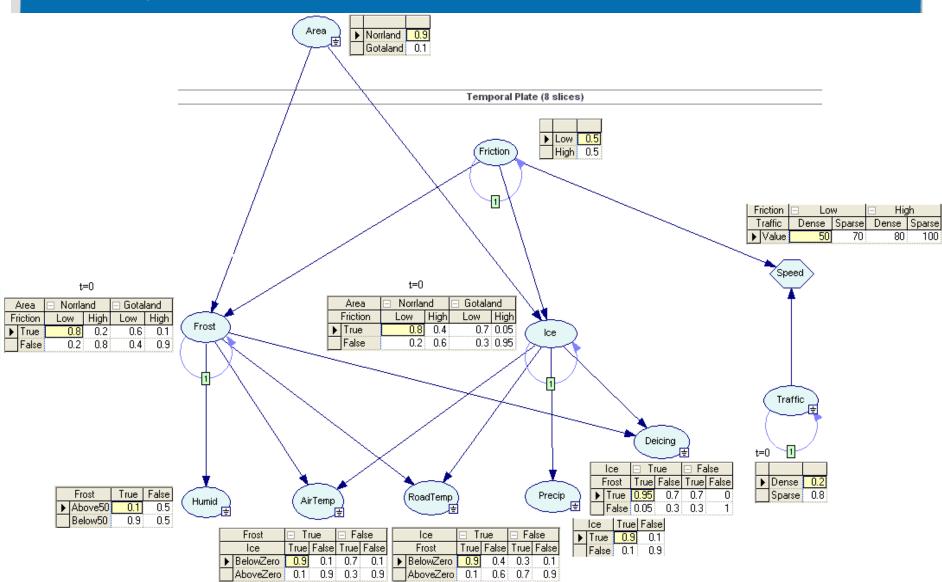
WHY THE NEED OF IMPROVED VARIABLE SPEED LIMIT SYSTEMS

• Implements a road weather model, that uses neighboring monitoring stations

Proposed system:

• Utilize probability functions for certain events

Advantages:


- Uncertainties are taken into consideration
- Smooth speed update

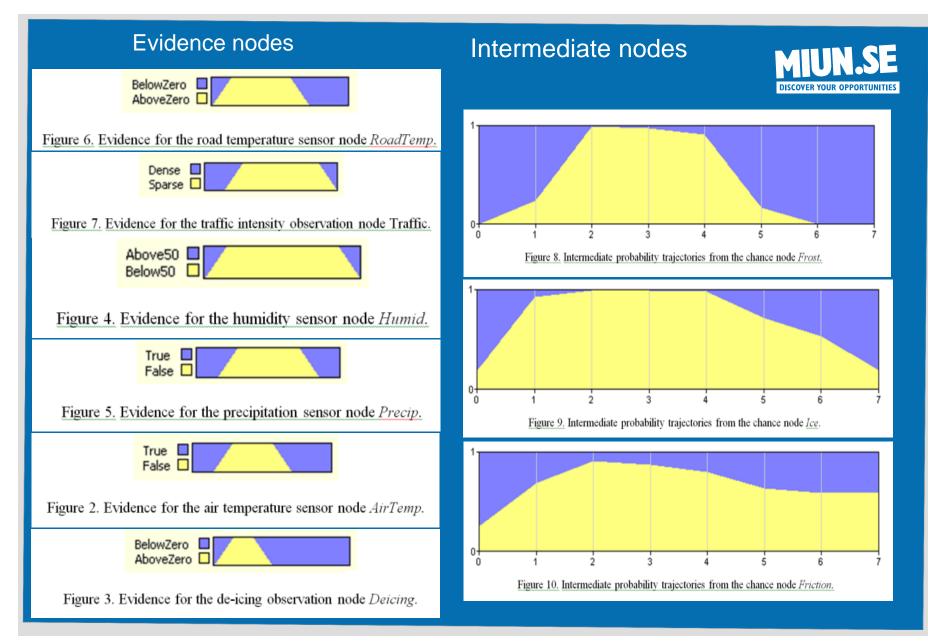
A Dynamic Bayesian Network for variable speed limits

INITIAL CONDITIONS

Initial probabilities at t=1 for intermediate nodes

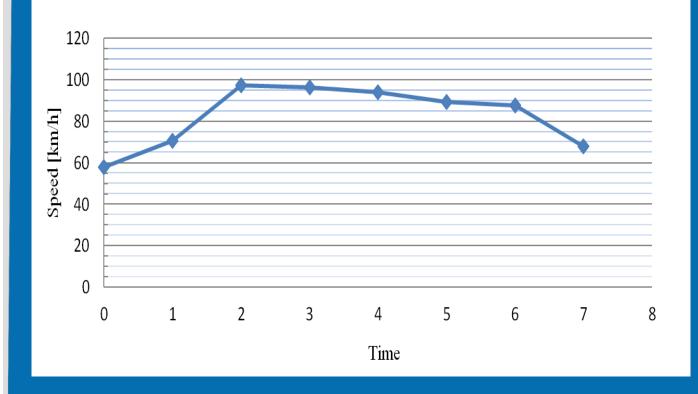
Frost at t=1

	Area	Norrland				 Gotaland 			
F	Friction 🖃 Low		🗆 High		🗆 Low		🖃 High		
(S	elf) [t	True	False	True	False	True	False	True	False
►	True	0.8	0.3	0.6	0.2	0.6	0.2	0.6	0.1
	False	0.2	0.7	0.4	0.8	0.4	0.8	0.4	0.9


Ice at t=1

1	Area	 Norrland 				 Gotaland 			
Friction		🗆 Low		🗆 High		🗆 Low		🗆 High	
(Sr	elf) [t	True	False	True	False	True	False	True	False
►	True	0.9	0.4	0.6	0.2	0.9	0.1	0.4	0.05
	False	0.1	0.6	0.4	0.8	0.1	0.9	0.6	0.95

Traffic at t=1


(S	elf) [t-1]	Dense	Sparse	
۲	Dense	0.4	0.2	
	Sparse	0.6	0.8	

RESULTING SPEED LIMIT RECOMMENDATION

A smooth speed regulation recommendation

Uncertainties are taken in consideration

Mittuniversitetet

FUTURE WORK

- Use weather models and forecasts in Dynamic Bayesian Network
- Integrate DBN in existing weather controlled models
- Perform field tests
- Evaluate DBN influence of performance increase in variable speed limit systems

THANK YOU FOR YOUR ATTENTION

Patrik Jonsson patrik.jonsson@miun.se

This research is financed by Combitech AB

