Area Forecast Model for Winter Road Maintenance over a Road Network

Jianmin Shao & S. A. Jones

Jianmin.shao@vaisala.com

24 May 2012

Road Weather Forecasts

- Road authorities need to treat (grit & salt in winter; water in summer) road in order to keep road safe for road users
- They need to know where and when bad road conditions to happen
- Roadside weather stations provide valuable info about local point weather conditions

Why Area or Route-based Forecast?

Page 3 / date / name / ©Vaisala

What Is Vaisala Area Forecast Model?

VAISALA

What Does the Model Do?

- Timely forecasts of Ts, Ta, Td, Ws, cloud cover, and friction index (FI) over a road network
- Not only when, but also where icing, snow and water accumulation is likely
- Important information for dynamic salting & ploughing
- Nowcast mode:
 - depending on sensor measurements
 - fully automatically
 - Iow costs without expensive external inputs or labour cost

IceBreak Model

Spatial Data Model

• A 2-D inverse distance weighting (IDW) model:

- n number of neighbouring observation stations
- z_i interpolated value at station j
- z_i observation at neighbouring i
- d_{ij} distance between stations i and j
- β & δ parameters to be optimised

$$z_{j} = \frac{\sum_{i=1}^{n} \frac{z_{i}}{\left(d_{ij} + \delta\right)^{\beta}}}{\sum_{i=1}^{n} \frac{1}{\left(d_{ij} + \delta\right)^{\beta}}}$$

Forecast/Nowcast over Road Network

- Dividing road into sections (e.g., 200m in length);
- Calculate Sky View Factor (SVF) & shading effect
- Taking into account of different road types & topography
- Taking in local geographical and environmental information such as grid reference, height, road type (motorway, A-road or B-road), land use (urban, woodland, water etc.);
- Projecting boundary conditions at observation stations with embedded statistical models in IceBreak;
- Interpolating initial RST and projected boundary conditions to road sections;
- Running IceBreak at all road sections and observation stations.

Test Areas and Data

West Midland & Glasgow city, UK

- 27 roadside weather stations in West Midland (70x80km)
- 29 RWS & Thermal Mapping surveys in Glasgow City and surrounding area
- Geographical data
 - UK Ordnance Survey (OS) Meridian dataset
 - GIS & Map Algebra
- Meteorological data
 - Measurements from roadside weather stations
- 3-hour ahead nowcsting

Point Comparison: 3-hour Nowcasting

- UK West Midlands: 27 sites, one month data (Jan. 2003);
- Each site was left out and treated as a forecast point in a single onemonth long run;
- All sites were left out in turn and then compared with sensor measurements at the sites;
- Overall weighed statistics with sample number = 91196

	Abs. err	Bias	SD	RMS
Ts:	1.04	-0.34	1.06	1.31
Ta:	0.73	0.30	0.89	0.98
Td:	0.63	-0.01	0.83	0.88
WS:	1.56	-0.51	1.39	1.94

Example of 3-hour Ts nowcast at WM

Page 11 / date / name / ©Vaisala

What is Thermal Mapping?

- Specially equipped vehicle
- Infrared thermometer automatically logs road surface temperatures
- Logging is distance based
 - vehicles travel at normal speed limits, with no disruption to surrounding traffic
- Data tagged with GPS coordinates
- Meteorological conditions monitored and recorded throughout survey
- Data processed and presented in desired format

Thermal Mapping Planning and Route Maps

Comparison of Ts Nowcast over Road Network with Thermal Mapping

- Glasgow and surrounding areas
 - Urban, suburban and rural areas
- Thermal Mapping surveys
 - Extreme night (22-23 Mar 2003)
 - Damped night (24-25 Mar 2003)
- 29 roadside stations
- 3-hour ahead nowcasting for the Thermal Mapping nights
- Comparing spatial patterns/trends of Ts and Ts at selected sections

Spatial Trend of Ts on Extreme Night

Nowcast

Thermal Mapping

Spatial Trend of Ts on Damped Night

Nowcast

Thermal Mapping

Page 16 / date / name / ©Vaisala

Comparison of Ts at Selected Sections

Extreme night (23 March 2003)									
Section	Easting	Northing	Road	Colour band on TM map	Temperature range on nowcast map				
А	2581	6711	A879	Red	Warm (3.5-3.7°C) and mild (1.3- 1.7°C) sections				
В	2525	6661	A8	Dark blue	Mostly cold (0.2-0.4°C) sections				
С	2585	6637	A728	Dark blue	Cold (0.3°C) section with mild (1.7-1.9°C) sections				
Damped night (25 March 2003)									
Section	Easting	Northing	Road	Colour band on TM map	Temperature range on nowcast map				
А	2542	6665	A739	Red	Warm (7.8-9.0°C) sections				
В	2603	6641	A749	Yellow	Mild (6.5-7.7°C) sections				
С	2548	6696	A739	Dark blue	Warm and mild sections				

- Combining Icebreak with Spatial Data Model, AF model is able to provide numerical forecasts/nowcasts of Ts, surface state, friction/grip, etc.
- Verification is done at two levels: point/station & pattern
- The results show that
 - At station level, the 3-hr nowcasts are fairly accurate
 - Spatial pattern of Ts distribution is generally matched between forecast and TM measurement
 - However, there is some mismatch between forecast and TM measurement due to ?
- Further tests on friction/grip forecast is desirable

Thank You!

Questions?

