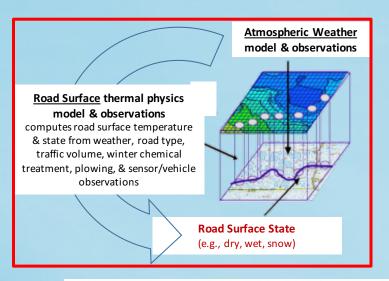
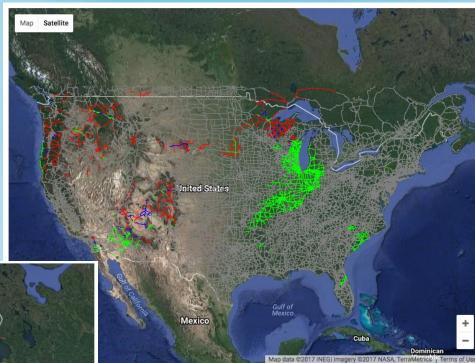
A Road State Climatology from the Global Weather Corporation Road Weather Forecasts

Danny Cheresnick, Bill Gail, Josh Thompson, Bill Myers and Nancy Rehak

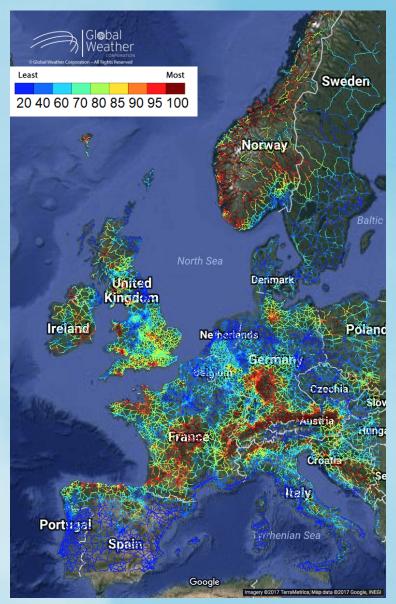
Introduction

- Road condition is difficult to both observe and forecast across a large domain.
- What are typical conditions?
- How often can certain road conditions be expected?
- Can there be a climatology?
 - Yes, there can be! Or at least a good approximation for far more roads than can actually be observed.
- How?
 - GWC RoadWX archives

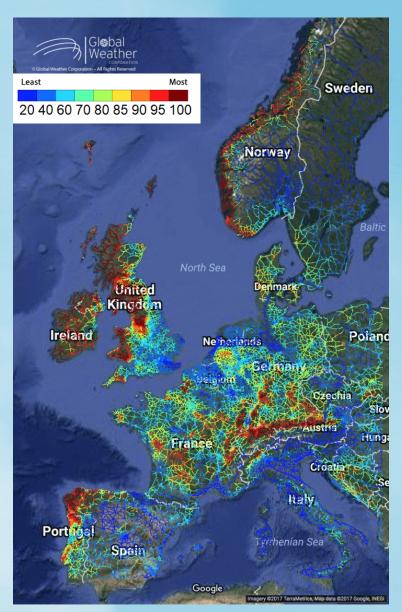

Methodology


- Use the GWC RoadWX archive for points along all primary roads in Western Europe.
 - A standard set of road physics.
 - 12 months of data (March 2017-Feb 2018; some September data is missing)
 - Recalculations of conditions every 0.5 km along roads
 - GWC PointWX atmospheric forecast data
- Calculate how often different situations occur along roads

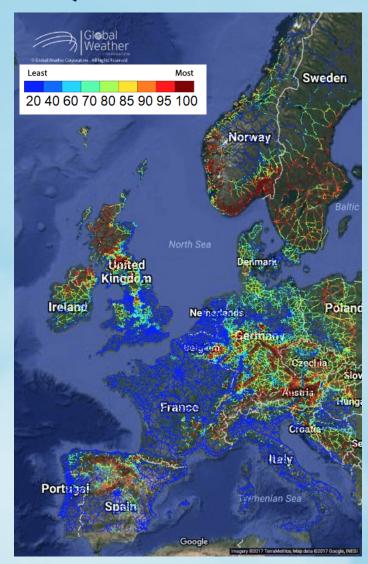
RoadWX Overview

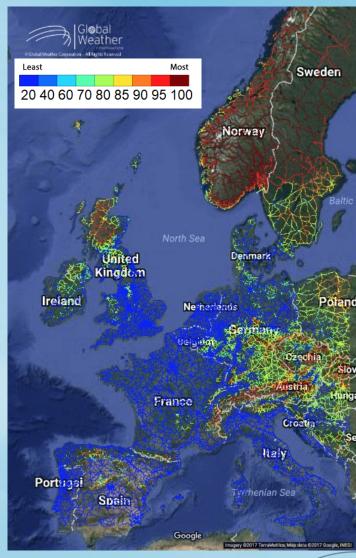

Norway Finland Relitic Sea Estonia Latvia Lithuania Kingdan Ireland Nethologies Poland Belarus Germany Augusin Crackin Slovakin Ukraine Moldova France France Crackin Slovakin Wertherian Serbia Black Sea Greece Turkey Google Mapdata e2017 Google Imagery e2017 NASA TerraMetrics Terms of Use

Road Surface Condition


Case 1: Wet Roads

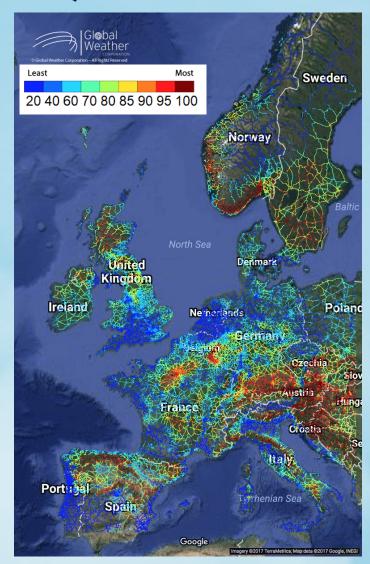
July 2017


Case 1: Wet Roads

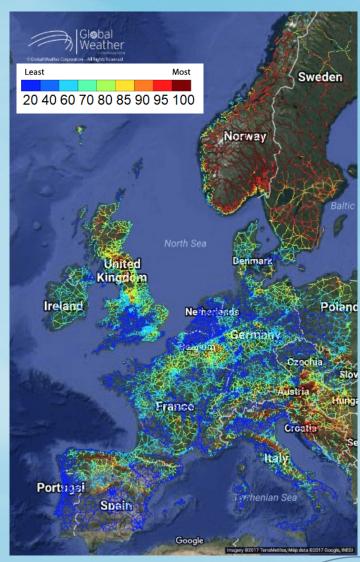

March 2017 – February 2018

Case 2: Wet/Slush Roads with Air T < 0C when QPE > 0 versus Snow/Ice Covered Roads

Wet/Slush Roads



January 2018

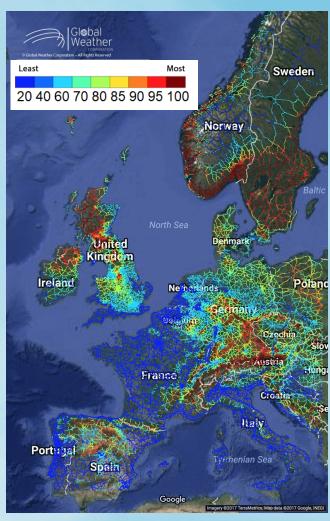

Snow/Ice Covered Roads

Case 2: Wet/Slush Roads with Air T < 0C when QPE > 0 versus Snow/Ice Covered Roads

Wet/Slush Roads

February 2018

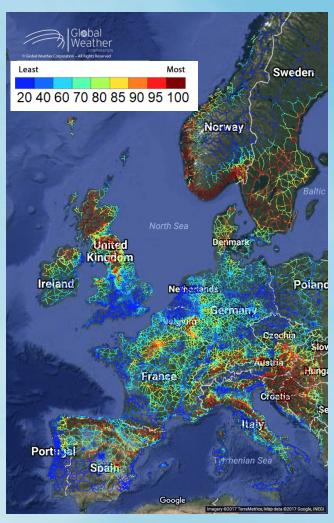
Snow/Ice Covered Roads


Case 2: Wet/Slush Roads with Air T < 0C when QPE > 0 versus Snow/Ice Covered Roads

	Road State	Points/hour	Hits	Points/month	Percent Hits	
Jan	Snow/Ice	95881	1618315	71335464	2.269	
	Wet/Slush	95881	436659	64432032	0.612	2 370.6%
Feb	Snow/Ice	95881	1413279	71335464	2.193	
	Wet/Slush	95881	l 816973	64432032	2 1.270	173.0%

 This demonstrates the potential errors associated with mapping atmospheric conditions to the road surface.

Case 3: Wet/Slushy Roads with Road T < 0C when QPE > 0



January 2018, counts below of 744 possible hours

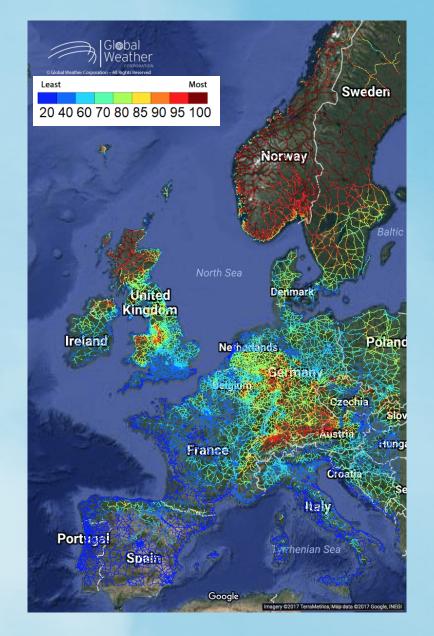
	20th	40th	60th	70th	80th	85th	90th	95th	100th
Jan	0	0	6	11	18	24	33	52	153

Case 3: Wet/Slushy Roads with Road T < 0C when QPE > 0

February 2018, counts below of 672 possible hours

	20th	40th	60th	70th	80th	85th	90th	95th	100th
Feb	0	2	6	9	15	19	25	37	164

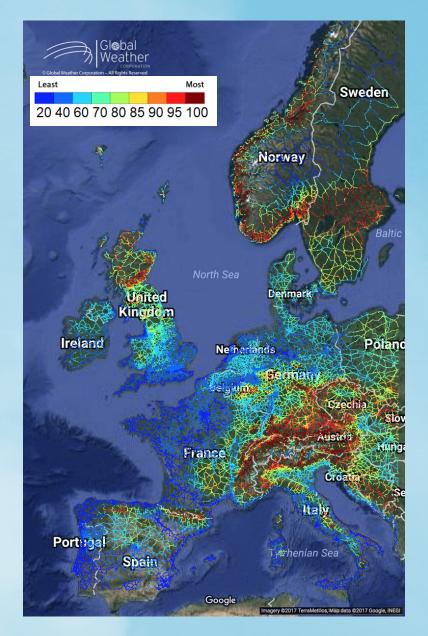
Case 3: Wet/Slushy Roads with Road T < 0C when QPE > 0


	Road State	Points/hour	Hits	Points/month	Percent Occurrence
Jan	Wet/Slushy	95881	1057801	71335464	1.483
Feb	Wet/Slushy	95881	1025651	64432032	1.388

	20th	40th	60th	70th	80th	85th	90th	95th	100th
Jan	0	0	6	11	18	24	33	52	153
Feb	0	2	6	9	15	19	25	37	164

 This demonstrates the impact of chemical treatment to the road surface.

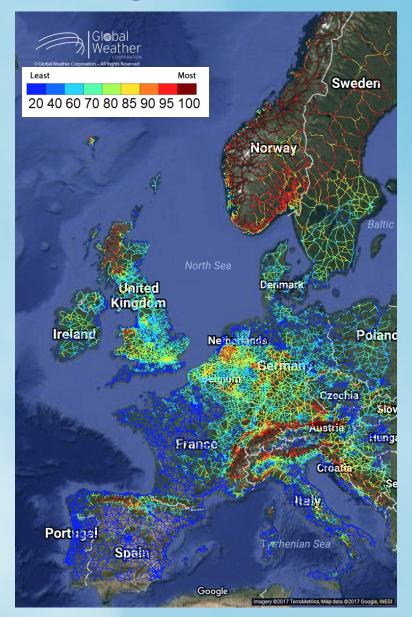
Case 4: Snow/Ice Covered Roads with QPE = 0


Case 4: Snow/Ice Covered Roads with QPE = 0

										Total
	20th	40th	60th	70th	80th	85th	90th	95th	100th	Hours
March	0	0	0	1	5	8	14	24	108	744
April	0	0	0	0	1	2	4	9	58	720
May	0	0	0	0	0	0	0	0	16	744
June	0	0	0	0	0	0	0	0	9	720
July	0	0	0	0	0	0	0	0	7	744
August	0	0	0	0	0	0	0	0	12	744
Sept	0	0	0	0	0	0	0	0	6	720
Oct	0	0	0	0	0	0	0	8	74	744
Nov	0	0	3	6	11	18	33	54	150	720
Dec	0	10	24	34	47	59	79	116	353	744
Jan	0	3	14	22	34	44	73	118	238	744
Feb	2	8	15	20	29	37	53	74	297	672

 This demonstrates the impact of drying time and the potential errors associated with mapping atmospheric conditions to the road surface.

Case 5: Air T and Road T on Different Sides of 0C


Case 5: Air T and Road T on Different Sides of 0C

										Total
	20th	40th	60th	70th	80th	85th	90th	95th	100th	Hours
March	0	3	14	23	42	71	103	134	722	744
April	0	6	16	22	36	56	96	189	713	720
May	0	0	0	0	2	4	11	38	641	744
June	0	0	0	0	0	0	0	0	720	720
July	0	0	0	0	0	0	0	0	710	744
August	0	0	0	0	0	0	0	0	744	744
Sept	0	0	0	0	0	0	0	0	215	720
Oct	0	0	0	2	6	12	29	87	742	744
Nov	8	18	33	46	72	94	120	153	720	720
Dec	38	61	87	104	127	140	156	179	719	744
Jan	5	25	57	77	98	111	132	173	744	744
Feb	51	89	134	161	199	224	251	282	671	672

 This demonstrates the potential errors associated with mapping atmospheric conditions to the road surface.

Case 6: Snow/Ice greater than 1mm on road

Observations and Future Research

- Many additional climatological quantifications are available.
- Mapping of atmospheric conditions to roads has potentially significant errors.
- The impact of road treatment can greatly change the expected road conditions.
- Air and road temperature are not good approximations for each other.
- Future research ideas are nearly infinite:
 - Better quantification of treatment by region
 - More variable comparisons
 - Regional data by season
 - High impact events

WEATHER FOR THE CONNECTED WORLD

Thank you!

dcheresnick@globalweathercorp.com