Image-based Automated Winter Road Condition Monitoring – a Deep Learning Approach

Garry Pan, Liping Fu, Ruifan Yu and Tae J. Kwon

Presented by

Liping Fu Professor and Director, iTSS Lab Department of Civil & Environmental Engineering University of Waterloo <u>www.civil.uwaterloo.ca/itss</u>

WATERLOO ITSS LAB

WELCOME TO ITSS LAB

Winter Road Condition Monitoring – The Needs ?

Winter Road Condition Monitoring...

Crowdsourced Winter Road Condition Monitoring Solution

Proposed Solution: Using a Pretrained Deep Convolutional Neural Network (CNN)

ResNet50 base module

InceptionV3 base module

Xception base module

Pre-Trained Image Classification Models

Experimental Study ...

MTO RWIS Cameras

MTO Mobile Data Collection Unit (HIIFP Projects, 2013-2018) Definition of RSC Classes and Manual Classification

Sample Image	Description	Four-Class Description
	At least 3 meters of the pavement cross-section in all lanes clear of snow or ice.	Bare (less than 10% snow coverage)
	Only part of wheel path is clear of snow or ice.	Partly Snow Covered
	No wheel path clear of snow or ice.	Fully Snow Covered (more than 90% snow coverage)
	Not recognizable because of too dark, too much light or too blurry	Not Recognizable

Data for Training/Testing

Experiment 1 - Testing on In-vehicle Devices

Models	Min	Ave	Max
VGG16	0.876	0.935	0.948
ResNet50	0.920	0.933	0.944
InceptionV3	0.914	0.934	0.945
Xception	0.919	0.935	0.941

Experiment 2 - Testing on Fixed Traffic Cameras

Models	Min	Ave	Max
VGG16	0.739	0.898	0.950
ResNet50	0.950	0.978	0.994
InceptionV3	0.880	0.956	0.991
Xception	0.921	0.961	0.985

Experiment 3 - Testing on Mixed Cameras (RestNet50)

Fully Connected Layers	Dataset 1	Dataset 2	Dataset 3
512	0.939	0.885	0.989
512-512	0.924	0.888	0.992
1000	0.929	0.878	0.993
1000-1000	0.933	0.886	0.991

Concluding Remarks

- The experimental study has shown great promise with the Deep Neural Networks
- Our experiments have expanded to over 60 cameras
- We have just initiated a new project funded by MTO for full-scale deployment/test

