Use a route based forecast for dynamic gritting

Ingeborg Smeding
Teamleader Weather & Transport, Meteorological Researcher
Winter clients
Airports
MRD

= Meteorological Research and Development

http://research.meteogroup.com

25 people
Products (examples)

- MOS and downscaling
- Energy forecasts: wind and solar power
- Run WRF
- Road forecasts
- Leaf fall model
- Consultancies
Road model

Input elements:
- Air temperature (MOS)
- Cloudiness
- Dewpoint (MOS)
- Precipitation
- Windspeed
- Soil temperature
- Road type (bridge?)

Energy balance method

Combined physical and statistical model

Road surface temperature and condition
Route based forecasting

Route based forecast instead of point forecast

-2 oC
0 oC
2 oC
Infrared measurement
Gritting

RWIS often in coldest part.
Entire road section is treated in the same way.

Is this useful?

Reduction possible!

Route based forecast
What do we need?

- Information about incoming and outgoing radiation
 - Skyview measurements
 - Solar view
- Meteorological information
 - Detailed weather forecast
 - RWIS site
 - (Air temperature / humidity measurement)
- Environmental information
 - (Thermal map)
Route based forecast

High resolution weather forecast on a grid

Model for calculating road surface temperatures

Route based forecast

Thermal map, TT/RH measurement

Database with for all routes:
- sky
- solar view factor
Examples network forecast

- Steel bridge below zero
- Open spots in country areas below zero
- Warm spots in the forest
Examples network forecast

Warm city

Cold bridge
Examples network forecast

UK Yorkshire 16-05-2012
Examples network forecast

Amsterdam and Arnhem, 20 Feb 2012

<table>
<thead>
<tr>
<th>Naam</th>
<th>Type</th>
<th>Tijd</th>
<th>T°w < 0 °C</th>
<th>Conditie</th>
<th>T°w > 0 °C</th>
<th>Min. wegedektemperatuur en conditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWS_ADAM_geel</td>
<td>MR</td>
<td>di 00:00</td>
<td>2.6</td>
<td>D D D D D N N N N N N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(332)</td>
<td></td>
<td></td>
<td>2.2</td>
<td>D D D D D N N N N N N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWS_ADAM_Rood</td>
<td>MR</td>
<td>di 00:00</td>
<td>2.7</td>
<td>D D D D D N N N N N N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(372)</td>
<td></td>
<td></td>
<td>2.0</td>
<td>D D D D D N N N N N N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brug</td>
<td>MR</td>
<td>di 00:00</td>
<td>2.8</td>
<td>D D D D D N N N N N N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>D D D D D N N N N N N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWS_Arhem_PS22</td>
<td>MR</td>
<td>di 06:00</td>
<td>0.2</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(330)</td>
<td></td>
<td>03:00</td>
<td>0.6</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brug</td>
<td>MR</td>
<td>di 06:00</td>
<td>0.4</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01:00</td>
<td>1.0</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWS_Arhem_PS23</td>
<td>D</td>
<td>ma 20:00</td>
<td>0.3</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(331)</td>
<td></td>
<td>00:00</td>
<td>0.7</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brug</td>
<td>D</td>
<td>ma 20:00</td>
<td>0.3</td>
<td>D D D D D N N N D D D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*x = max. percentage v. route < 0 °C
v = max. percentage v. route met gladheid)
Verification

17 February 2011, Ede – Otterlo - Arnhem

Observation

Network model
Verification

17 February 2011, Ede – Otterlo - Arnhem

Observation
Networkmodel
Communication to gritting machine

Road temperature and condition
Communication to gritting machine

For extra safety: measure actual road surface temperature to check forecast
Communication to gritting machine

Two ways to optimize gritting:

1. Dynamic gritting
2. Dynamic routes

Road temperature and condition
1: Dynamic gritting

Use a variable amount of salt

Example:

Critical: \[7 \text{ g/m}^2 \]
RST < 0\(^\circ\)C: \[3 \text{ g/m}^2 \]
0 < RST < 1\(^\circ\)C: \[3 \text{ g/m}^2 \]
Rest: \[0 \text{ g/m}^2 \]
2: Dynamic routes

Optimize routes to treat critical places first.
Efficiency

Types of slipperiness:
• Precipitation
• Black ice
• Condensation

➢ Last (snowy) winter in 20% of cases dynamic gritting could have been applied.
➢ Normal winter: > 50% of cases can be dynamic.
Thank you