Intelligent Road Weather Forecasting in the CARLINK Platform

Pertti Nurmi
Timo Sukuvaara & Marjo Hippi
Background

CARLINK: Wireless Traffic Service Platform for Linking Cars

- **Aim**: Develop an intelligent wireless traffic service platform between cars which is supported with wireless *(WLAN / WiMAX)* transceivers along the roads.

- Two-year project: Sep 2006 … Dec 2008

- EU_Eureka Program Celtic Cluster - Call 3

- Partners from Finland, Luxembourg, Spain

- Int’l project coordinator: ETRA I+D (Spain)

- Finnish project team coordinator: FMI

 - Finland: FMI, Mobisoft, Infotripla, Sunit, VTT
 - Luxembourg: CRP Henri Tudor, Synergiums, ACL
 - Spain: ETRA I+D, Moviquity, University of Malaga

pertti.nurmi@fmi.fi
Approach

- **Backbone**: Traffic Service Central Unit (TSCU) is installed beyond wireless transceivers to maintain the system.
- TSCU communicates in real-time with vehicles facilitating various services and applications to be updated:
 - **up-to-date local road weather information** 😷 FMI
 - *Intelligent services for public transportation* 😷 *Luxembourg*
 - *Urban traffic management* 😷 *Spain*
Traffic Service Central Unit

TSCU: Communication centre collecting vehicle data from Base Stations and GPRS network, delivering data to service cores, and delivering weather and warning data from Base Stations to vehicles.

Traffic Service Base Stations

TSBS: Located along the roads, storing up-to-date data from TSCU and delivering it to bypassing vehicles;

Vehicle-based observed data are collected simultaneously and delivered to TSCU.
Vehicles receive latest service data (e.g. local adverse weather warnings) when passing TSBSs; Vehicle-based observed data is simultaneously delivered to TSBSs; Vehicles can also forward their newest service data to encountering vehicles → Base Station range is enhanced

Potential critical data (e.g. accident warning) are delivered thru additional GPRS network to guarantee instant delivery
Traffic Service Central Unit (TSCU)

- System Central Unit
- User management
- Data storage:
 - Vehicle-based observed data
 - Service data
- 2-way connection with vehicles
 - Indirect connection thru base stations ⇔ Main channel
 - GPRS ⇔ Emergency data
Traffic Service Base Stations (TSBS)

- Base station network along roads
- Delivers TSCU data to vehicles + collects vehicle-observed data
 - Up-to-date TSCU data is stored into TSBS ⇔ Delivery during vehicle bypassing
 - TSBS instrumentation provide more accurate weather observations than vehicles ⇔ Applicable for vehicle data calibration and monitoring

- Wireless communication by 2 means
 i. Mobile WiMAX
 ii. WLAN_IEE 802.11g
Mobile End Users (MEU)

- Vehicle communication system
- 2-way communication with TSCU
 i. Indirectly thru base stations
 - Main channel (hi-capacity)
 ii. GPRS: Emergency data (lo-capacity)

- Vehicle-to-vehicle communication
 - WLAN or WiMAX
 - Emergency data
 - Most recent platform data
 - True networking with multihop connection to base stations (future)
Services

- Located in a fixed network beyond TSCU
- Direct connection to TSCU
- Allowing for various services...

Road Weather Service
- Based on FMI RWM
- Present 10 km model resolution enhanced with local vehicle data
- Delivered to TSBSs

Emergency services
- Accidents and other critical data collected/delivered as local warnings

Traffic logistics
- Exploiting information of traffic load

Mobile user
- Guidance and information services for moving users
Vehicle systems

- Communication system in vehicle computer unit - data from:
 - Car Internal CAN-Bus
 - Tire rotation speed
 - Airbag burst
 - CAN-Bus or own measurements
 - Outside temperature
 - Road surface temperature
 - GPS location
 - User interface
 - Emergency button

- Observation data at pre-defined intervals, with GPS location; Delivered thru TSBS to TSCU
- Emergency data instantly over GPRS to TSCU, and thru WLAN / WiMAX to encountering vehicles
Goals

- Define interfaces between various elements of the platform
- Define individual elements and ensure their interfacing compatibilities (done by participating Partners, locally)
- Piloting operability and efficiency
 - Simulations and testing of the demonstration systems
 - Compare and analyze WiMAX- and WLAN-based platform structures
- Test and further develop FMI’s local Road Weather Service components by comparison to additional RW observations and/or forecasting systems

"Demonstration systems will be constructed to test various usage scenarios and services..."
Road Weather Model

Model structure
1-dimensional energy balance model for vertical heat transfer

- Turbulence
 - natural
 - traffic induced

- Atmosphere
 - wind speed (V_z)
 - air temperature and humidity (T_a, Rh)
 - global (short wave) radiation ($R_{S,d}$)
 - incoming long wave radiation ($R_{L,d}$)
 - precipitation (P)

- Traffic
 - mechanical wear, heating

- Surface heat exchange
 - sensible heat flux (H)
 - latent heat flux (LE)
 - long wave radiation (R_L)
 - stability

- Ground heat transfer
 - heat conductivity (λ)
 - specific heat (c)
 - density (ρ)
 - porosity (ϕ)

Upper boundary forcing
Road Weather

example adopted from “ColdSpots” project

RWM resolution

Road surf. Temp.

[Map with TSBS, RWS, and 30 km marks]

Road surf. Temp.

10 km

30 km

10 km

10 km

pertti.nurmi@fmi.fi

Test Simulations

- Conducted with a NS-2 simulator, with a 802.11 protocol
- Simulation of 2 scenarios:
 i. Scenario: 8 vehicles driving to same direction at equal 100 m distance
 ii. Scenario: 8 + 8 vehicles driving to opposite directions
 (those driving to same direction at equal 100 m distance)
 - Both scenarios: 4 base stations beside the road, 1000 m apart
- **Connection break times and thruputs studied**, with increasing traffic amounts
 - Optimization of base station distances
Scenario (i) vs. Scenario (ii):
- Longer breaks in communication
- Higher throughput

Average throughput was insufficient
- Increase base station density
- Optimization of simulation parameters

Base station distance < 1 km for breakless communication

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Connection time (%)</th>
<th>Cumulative throughput per vehicle</th>
<th>Average throughput per vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>64</td>
<td>1,5 Mb</td>
<td>15,8 kbps</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>81</td>
<td>1,1 Mb</td>
<td>11,7 kbps</td>
</tr>
</tbody>
</table>
Communication between base station and vehicles tested with vehicle passing by station at different speeds

Preliminary testing within demonstration system
Driving speeds 60, 70, 80 and 90 km/h
(with 95 km/h communication could not be conducted)

End of January 2008

Equipment:

- Colubris MAP-330 Multiservice Access Points
- Sunit D7 Vehicle PC System
- Toyota Hilux 2007
Preliminary results only indicative:
Thruput expected to decrease with increasing speed
- Illogical results due to small sample (?)
- Variations dependable on vehicle’s approaching direction, temperature, etc.

Main result, however:
Thruput appears adequate for platform services, at least
- Up to 90 km/h
- For base station-to-vehicle communication

Example of test measurement:
Vehicle has passed the base station, turned around, and driven to opposite direction passing again the base station

<table>
<thead>
<tr>
<th>Speed</th>
<th>Connection uptime during one pass</th>
<th>Average throughput during one pass</th>
<th>Avg. cumulative throughput during one pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 km/h</td>
<td>50 s</td>
<td>0,27 Mbps</td>
<td>13,3 Mb</td>
</tr>
<tr>
<td>70 km/h</td>
<td>38 s</td>
<td>0,27 Mbps</td>
<td>10,1 Mb</td>
</tr>
<tr>
<td>80 km/h</td>
<td>40 s</td>
<td>0,27 Mbps</td>
<td>10,8 Mb</td>
</tr>
<tr>
<td>90 km/h</td>
<td>42 s</td>
<td>0,26 Mbps</td>
<td>10,8 Mb</td>
</tr>
</tbody>
</table>
Scheduled for autumn/winter 2008
Along Helsinki-Turku highway
Dense weather observation network: http://testbed.fmi.fi

Infrastructure:
- **TSCU**: Server in a fixed network, not physically in the area; with GPRS capabilities
- **TSBS**: IEEE 802.11g access points on laptop PCs; Additional connection to weather stations
- **Mobile End User**: Sunit vehicle PC, IEEE 802.11g tranceiver, GPS locator, GPRS unit, and interfaces to CAN-Bus and external measurements
- **Services**: Road Weather and Warning service
Parameters to test & demonstrate:

✓ Base station distance optimization
✓ Vehicle vs. observed data evaluation
✓ User-interface evaluation
✓ Connection time (%)
✓ Thruput
✓ Service update time
 - Road weather
 - Accident warning

Demonstration (2)
Web links:

- http://carlink.lcc.uma.es
- www.celtic-initiative.org/Projects/CARLINK

Thank You for Your Attention!