Title: The ROADIDEA data sources – results, utilisations and mediation

Author: Rene Kelpin, German Aerospace Agency, Institute for Transport Research

Introduction

The main objective of the EU FP7/INFSO research project ROADIDEA is the development of new and innovative services for European transport systems. It aims at improvements of road traffic conditions and forecasts with special respect to certain weather conditions in different parts of the European continent.

The main prerequisite for achieving this goal is the knowledge about and the availability of valuable and high quality road traffic and weather data sources, which have not been used systematically so far. The base for the targeted approach to be applicable all over Europe is twofold. It consists of the following elements:

- a comprehensive investigation of available data sources in Europe and
- a reliable data mediation between data/service providers and the project data archive.

In a dedicated data work package (WP2) of the project ROADIDEA general data availability in Europe was analysed. After investigating information about available data sources in the project member states, and storing corresponding data set descriptions in a preliminary data archive (work task 2.1 of WP2), available data was analysed in terms of its usability (task 2.2) and interoperability with other data sets (task 2.3). Taking main findings of those analyses into consideration, a common data model and a corresponding data format was developed (task 2.4). Finally, both the archive and the format were implemented into the data mediation architecture as a base for project related data input and output relations. Right from the start all WP2 efforts were aiming at the preparation and the definition of such a data mediation system.

The main goal of the data mediation approach is to mediate between data providers and data users, on the one hand, and a data handling architecture, on the other – as secure, reliable, and generic as possible. Direct access to the project data archives and repositories is not desired. New data sets need to be well described and analysed before being stored in a common data format. Data availability requests have to be made and responded in a highly standardised form. If these constraints are given, implementation of the data mediation architecture is the best choice. It has to be considered as the middleman between the data archive and the data applications, such as transport services in the given project context.

The given paper first briefly describes the project data source investigation and its results, as well as the main findings of the work tasks 2.2 – 2.4. The focus of this paper is on the data mediation idea and the description of the ROADIDEA data mediation architecture.

Methodology of data source investigation and major results:

In order to perform a best fitting data source investigation a data survey questionnaire was designed using the experience of the DLR clearing house for transport data. This questionnaire was used to identify and to describe data sources available in the project member states or ascertained and utilized by ROADIDEA project partners. This data source identification covered the following initial main data classes [Dalgleish et al, 2008]:

- data from vehicles,
- data from infrastructure and
- weather monitoring.

During the data collection period, about 60 data sets were identified and described. Figure 1 shows the assignment of the investigated data sources to the mentioned survey data classes (some data sets were assigned to more than one class).

An upcoming discussion showed that this classification was not likely to allow a proper distinction between specific data sources and its classification. So, a more detailed data classification was proposed and applied to the ROADIDEA data survey. Based on this classification the assignment, shown in Figure 2, gives a more detailed overview of investigated data sources. It allows a fairly good assessment of the accomplished survey as such, as well as of its results. With 24 resp. 49 data sets the main data classes ‘traffic monitoring’ and ‘weather conditions’ are well filled with respect to the main project purpose.
More detailed data source analyses took place in Germany, Finland, Croatia and Italy. The focus of these analyses was the comparison of general data availability in different European countries, with special respect to the degree of development in terms of data policies.

In addition, general availability of several data sources relevant for the ROADIDEA project purpose all over Europe has been investigated. Initial contacts with providers of these data sets were established; willingness to contribute to the project was discussed and partly agreed. Among more general elements (e.g. location, time, etc.), data access possibilities, licence fees and data quality matters were also considered thoroughly with the data source descriptions. This was very important in order to support other ROADIDEA work packages dealing with business models and service evaluation. Thus, while describing, comparing and analysing the data, a very good understanding of its contexts and its contents was obtained.

Participating project countries can - more or less - be covered with the same or similar kinds of data sources. However, a general data availability for ITS is not yet guaranteed all over Europe. Some well developed countries (e.g. Sweden, Finland, Germany, Italy) are providing huge amounts of reliable and well maintained data from high quality, while in other developing countries in South- and Eastern-Europe, data responsibilities and availabilities are unclear or under development. Hence, during the investigation of data availability some partners got in contact with various obstacles and problems. These problems were rather bureaucratic than technical. In order to convince road authorities, public and private data providers, and governments to collaborate with, and generally support research projects, a lot of work is still to be done. The most sustainable way to find new collaborators and data providers is to show the success of e.g. innovative ROADIDEA services which might be achieved, with data the companies are providing.

More information, charts and data examples can be found in [ROADIDEA2008a].

Interoperability of investigated data sources

The main result of the analysis of interoperability of available data sources was the recommendation of a minimal data catalogue for European ITS.

Within corresponding work tasks of WP2, available data sets have been analysed in terms of comparability and interoperability. In part, it is possible to evaluate accuracy of data sources by using data from similar sources. Data gaps can be closed; systematical or technical bias can be identified and eliminated. Moreover, with the combination of – at first sight – independent data sources, new information can be obtained. Hidden content can be derived from useless data sources. For instance, [ROADIDEA2008c] describes the attempt to identify a functional relation between permanent road sight surveys with e.g. Floating Car Data (FCD) and road weather situations. The attempt finally failed: The road network penetration rate with FCD was not high enough to allow a derivation of deterministic rules and reliable statements describing such a functional relation. Nevertheless, the general question still exists: Is it possible to derive information about weather conditions from the traffic status on well observed road networks – vice versa?

But, the success of such analyses mainly depends on data: (freely) available across the board, precise and accurate, and reliable. In order to obtain a Europe-wide availability of data relevant for ITS purposes, corresponding data classes/sources have to be identified and classified. The definition of those data classes was recommended as the major conclusion of the consideration of data interoperability in WP2. In order to create ITS services valid and applicable all over Europe, most necessary data sources have to be identified and publicly provided for the transportation sector. Bureaucratic barriers are to be overcome; license and fee problems have to be negotiated at a European level. That
means that an EC program is needed, which has to be applied in all EC member states as a common data policy.

More information can be found in [ROADIDEA2008b].

The ROADIDEA common data format and the project data platform

In order to make different data sets comparable and able to be combined, a common base had to be found, with which data sets can be described in the greatest detail needed. Such a common description was to be considered as a main prerequisite for a project data platform - and for the desired ROADIDEA data mediation architecture WP2 of the project ROADIDEA was aiming at.

Taken into account all known and conceivable data sets for the specific project background, a set of necessary descriptors was designed, which was given a structured shape and functionality with the well developed XML standard. With the ROADIDEA XML data schema, a descriptive data format was designed, which suits best the underlying project demands. An assortment of existing data formats, architectures, schemes, and standards (e.g. TransXML, DATEX, GTF, etc.) was analyzed in terms of applicability for the ROADIDEA purpose. No existing format, however, was suitable for the ROADIDEA approach without applying major changes and adaptations. Nevertheless, parts of some schemes, such as Dublin Core (DC) and Geography Markup Language (GML), were used. However, it was decided to create ‘another’ proprietary and problem oriented XML schema. This XML-based data format is suitable for the description of all project related data sources; it is as slim as possible for the given attempt, and free of unnecessary format overhead. Figure 3 shows the ROADIDEA XML scheme data model.

Figure 3: ROADIDEA data model

More information can be found in [ROADIDEA2009a]. The ROADIDEA data archive is set up with the open sources software Eprints. Find more information about the software at [Eprints].

SIRWEC paper „ROADIDEA data mediation” 12.12.2009
The ROADIDEA data mediation architecture

As already mentioned above, the general idea of data mediation is the creation of a “middle-man”-system, which is responsible for data relations into and out of a data handling system. Due to licence, privacy and data security policies, direct access to the data is not allowed. Especially, data availability requests to the data archive have to be processed and answered in a well defined manner. Interfaces for both human interactions (e.g. via a web service) and application triggered (‘machine-made’) requests (e.g. via an API) are to be provided with the same system. Predefined and generic dictionaries have to be implemented, which translate requests into a language the entire system is able to understand and to work with. The internal communication is highly standardised; it is based on XML-schemes. As for the ROADIDEA project context, the system has to be able to deal with very different kinds of data - from road traffic and weather observations, to radar satellite images and road friction measurements. Corresponding data descriptors and contents have to be stored in the same archive, have to be merged and compared with respect to very specific application and utilisation purposes. The data mediation architecture may be considered as a nut-shell around the ROADIDEA data archive with well defined input and output relations.

The achievements of the preceding work tasks of WP2 were taken as preparations for creating the backbone, on which the final data mediation system was based. It took into account not only the project data sets, but also the results from various data surveys and discussions in all related project work packages, and from the ROADIDEA project innovation seminars. With the two innovation seminars a lot of new ideas with a lot of – so far – unknown data needs and application aspects were created (see also [ROADIDEA2009c] and [ROADIDEA2009d]). All these information, expectations and specifications have been used while designing the XML data format, the data model, and finally the ROADIDEA data mediation system.

The ROADIDEA data mediation distinguishes between Input and Output schemes.
Figure 4: Input Mediation Scheme

Figure 4 shows the data mediation output scheme. The main element of both the input and the output scheme is the ‘Mediation Core’. It is accessing the data archive, the dictionary archive and several XML template directories. On the left side three examples illustrating the diversity of ROADIDEA data sources are shown. To every data source a corresponding dictionary was defined, which describes the data source information implicitly and explicitly. This means that, beside the raw data content (i.e. codebook), all descriptive information is given with the dictionary. Using these dictionaries, input data sources are transferred into the ROADIDEA XML format and stored into the internal data archive.

Figure 5: Output Mediation scheme

Figure 5 gives an overview about the data mediation output scheme. It shows that the system is able to deal with both ‘man-made’ and ‘machine-made’ data requests. After processing (communication and translation) a specific data request, a corresponding XML-request is sent to the data archive. If data fitting to the selected choices and keywords is found in the data archive, the XML data request will be responded to with a list of data sets. The list comprises the most important data set information (ID, title, abstract and internal contact information). ‘Machine-made’ requests will be answered with a data set list stored and submitted in a specific XML format.

Conclusion and future work

With the described data mediation architecture, a powerful tool for project-related data access and exchange is given. This architecture has to be considered as the basis on which data related project applications may be premised. While developing the data mediation architecture, it was the main goal of WP2 to provide an easy-to-use option for implementing new applications and utilizations (from a data point of view). The system is able to establish connections between data providers, on one side, and service providers (data users), on the other. The applied data sources of the project pilot ‘Gothenburg traffic monitoring’ are implemented as a demonstration case for showing the feasibility and functionality of the system. This implementation can be found and tested at http://www.roadidea.eu/packages/wp2/default.aspx. Example data sets (for the Gothenburg pilot) can be transformed into the ROADIDEA XML-format and uploaded into the
data archive; data requests can be created, adapted and sent to the system, which will be responded with corresponding data set listings.

However, the underlying data archive determines the value of applicability and reliability of the system. That means that a system like the described ROADIDEA data mediation architecture strongly depends on available (investigated, described and stored) data sets and their descriptions. Thus, the data source investigation may never be considered as concluded. In the remaining run-time of the project, ROADIDEA WP2 will continue with the data source investigation in countries other than those participating. General information about data availability for ITS in Europe is desired as one major outcome of the ROADIDEA data work package. This goes hand in hand with an intensive discussion and deployment of the idea of a data catalogue (minimal set of data) for ITS. On a European level it has to be agreed upon a minimal set of data sources, which are most necessary for the development and implementation of elementary ITS applications. In the 21st century, applicability of ITS cannot simply end at the frontiers. But, such an approach can only be followed if similar data availability is given by all member states in the European Union. This - not completely new - idea was raised with one of the early WP2 tasks, and it got a lot of attention within different working groups in the European Commission, as well as in some collaborating research projects such as EASYWAY. If forces can be joined in the near future, valuable and reliable results can be expected, which might influence the deployment of services for the transportation sector deeply.

Once again: In order to create a win-situation for all contributors, which are
- public and private service providers,
- public and private data providers and
- research institutions,

in a well developed European ITS system, data providers have, first of all, to be convinced to collaborate. They have to be convinced to allow cheap or – for specific deployment and research purposes – even free access to their data bases. This has to be supported by European rules and policies, but also by local governments and authorities. Data has to get a stronger focus than it already has - right from the beginning of the basic research up to the implementation of the commercial services.

As for the remaining project period until June 2010, new utilisations of the provided architecture are to be defined in co-operation with data related work packages in ROADIDEA – and possibly with other data related projects, activities and initiatives.

References

