Improving estimates of roughness length (Z₀) in a road weather prediction model using airborne LIDAR data

D.S.Hammond, L.Chapman & J.E.Thornes

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

2010 Standing International Road Weather Commission Biennial Conference, Quebec City, Canada, February 5th -7th 2010.

Geographical & Infrastructure Parameters used to drive the road weather prediction model

Geographical Parameters	Infrastructure
Sky View Factor (ψ_s)	Road Type
Altitude	Roughness Length (Z ₀)
Slope	Traffic Density
Aspect	Emissivity
Latitude	Albedo
Longitude	

Roughness length (Z₀)

• Air flow in boundary layer largely controlled by frictional drag imposed on flow by the underlying surface

• Z₀ - measure of the aerodynamic roughness of a surface

• "Height at which the neutral wind profile extrapolates to a zero wind speed." (Oke, 1992)

How is Z₀ currently parameterised in the road weather prediction model

• Simple look-up table of Z₀ values assimilated from scientific literature

• Ordinal dataset of Z₀ – major oversimplification

	Rural	Semi-rural	Suburban	Urban	City Centre
Motorway	0.50	0.50	0.75	1.00	2.00
A-road	0.25	0.50	0.75	1.00	2.00
B-road	0.25	0.50	0.75	1.00	2.00
C-road	0.25	0.50	0.75	1.00	2.00

Modified from Chapman (2002)

Example of Z₀ classification

Use LIDAR data to obtain surface elements heights

Simple rule of thumb:

 $Z_0 = f_0 Z_H$

(Oke, 1992; Grimmond & Oke, 1999)

 $f_0 \approx 0.1$

(Garratt, 1992; Hanna & Chang, 1992; Grimmond & Oke, 1999)

Effective roughness length (Z^{eff}):

 $\langle Z_0 \rangle$

(Vihma & Savijärvi, 1999)

LIDAR data © 2009 Landmap

Methodology

Methodology

ArcMap

•Focal Mean neighbourhood function

•5 distances of upwind fetch = $5 Z_0^{eff}$ datasets

•Prevailing westerly wind

Distribution of Z_0^{eff} values

Distribution of Z_0^{eff} values

Davenport classification of effective terrain roughness

	$Z_0(m)$	Landscape Description
	1. 0.0002 <i>"Sea"</i>	Open sea or lake (irrespective of wave size), tidal flat, snow- covered flat plain, featureless desert, tarmac and concrete, with a free fetch of several kilometres.
	2. 0.005 "Smooth"	Featureless land surface without any noticeable obstacles and with negligible vegetation; e.g. beaches, pack ice without large ridges, marsh and snow-covered or fallow open country.
	3. 0.03 "Open"	Level country with low vegetation (e.g. grass) and isolated obstacles with separations of at least 50 obstacle heights; e.g. grazing land without wind breaks, heather, moor and tundra, runway area of airports. Ice with ridges across-wind.
	4. 0.10 "Roughly Open"	Cultivated or natural area with low crops or plant covers, or moderately open country with occasional obstacles (e.g. low hedges, isolated low buildings or trees) at relative horizontal distances of at least 20 obstacle heights.
	5. 0.25 "Rough"	Cultivated or natural area with high crops or crops of varying height, and scattered obstacles at relative distances of 12 to 15 obstacle heights for porous objects (e.g. shelterbelts) or 8 to 12 obstacle heights for low solid objects (e.g. buildings).
10)	6. 0.5 "Very Rough"	Intensively cultivated landscape with many rather large obstacle groups (large farms, clumps of forest) separated by open spaces of about 8 obstacle heights. Low densely-planted major vegetation like bush land, orchards, young forest. Also, area moderately covered by low buildings with interspaces of 3 to 7 building heights and no high trees.
	7. 1.0 "Skimming"	Landscape regularly covered with similar-size large obstacles, with open spaces of the same order of magnitude as obstacle heights; e.g. mature regular forests, densely built-up area without much building height variation.
	8.≥2.0 "Chaotic"	City centres with mixture of low-rise and high-rise buildings, or large forests of irregular height with many clearings.

LIDAR data © 2009 Landmap

Ordinal v Ratio Dataset

Existing Ordinal Z₀ Classification

M5 motorway M5 motorway Minor road (rural) Minor road (rural) Minor road (semi-rural) Minor road (semi-rural) $Z_0 = 0.25 m$ $Z_0 = 0.50 m$ 0.1m 1.40m P.C. Kanada

LIDAR data © 2009 Landmap

New LIDAR based Z_0^{eff} Classification

Statistical Analysis

- \bullet Are there significant differences in $Z_0^{\rm eff}$ values between land use categories?
- 2 land use datasets used in the comparison
- Kruskal-Wallis rank-order statistical analysis

ENTICE Land Use	OWEN Land Use (Owen <i>et al,</i> 2006)		
1. Rural	1. Villages/farms	6. Urban	
2. Semi-Rural	2. Suburban	7. Light urban/open water	
3. Suburban	3. Light suburban	8. Woodland/open land	
4. Urban	4. Dense suburban		
5. City Centre	5. Urban/transport		

Kruskal-Wallis Analysis

• Results of Kruskal-Wallis analyses were highly significant (p < 0.001) over all 5 distances of upwind fetch for both land use datasets

• Significant differences do exist in the ZOeff values between at least two land use classes in each dataset, but it doesn't reveal where these differences exist

Wilcoxon rank-sum Tests

• Analysis performed on the Z0eff values within each independent land use class

• Overall the vast majority of the land use comparisons are statistically significant for both land use datasets

• New method of roughness parameterisation does distinguish well between different land use categories around the route

Multiple Regression on Thermal Mapping data

- 20 nights Thermal Mapping data (dependent variable)
- ENTICE GPD parameters (independent variables)

- 1st run Existing Z₀ classification
- 2nd run New Z₀^{eff} dataset

Statistical Model Performance

Potential Future Improvements

• Distance of upwind fetch calculated for each individual forecast point as a function of obstacle height

• Same technique could be used to assimilate a look-up table of Z_0^{eff} values for various directions of upwind fetch

Limitations

• Technique assumes constant direction of upwind flow, with each portion of the upstream surface considered to be an equal contributor to the aerodynamic character at a given forecast point

• Technique fails to account for moving surface elements, such as vehicle traffic

References

- Bärring, L., Mattsson, J.O. & Lindqvist, S. (1985) Canyon geometry, street temperatures and urban heat islands in Malmö, Sweden. Int. J. Climatol. 5, 433-444.
- Bogren, J., Gustavsson, T., Karlsson, M. & Postgård, U. (2000) The impact of screening on road surface temperature. *Meteorol. Appl.* 7, 97-104.
- Bottema, M. & Mestayer, P.G. (1998) Urban roughness mapping validation techniques and some first results. J. Wind Engineering and Ind. Aerodynamics. 74-76, 163-173.
- Bradley, A.V., Thornes, J.E., Chapman, L., Unwin, D. & Roy, M. (2002) Modelling spatial and temporal road thermal climatology in rural and urban areas using GIS. *Clim. Research*, 22, 41-55.
- Chapman, L., Thornes, J.E. & Bradley, A.V. (2001) Modelling of road surface temperature from a geographical parameter database. Part 2: Numerical. *Meteorol. Appl.* 8, 421-436.
- Chapman, L. & Thornes, J.E. (2005) The influence of traffic on road surface temperatures: implications for thermal mapping studies. *Meteorol. Appl.* 12, 371-380.
- Chapman, L. & Thornes, J.E. (2006) A geomatics-based road surface temperature prediction model. Sci. Total Environ. 360, 68-80.
- Davenport, A.G. (1960) Rationale for determining design wind velocities. Journal of Structural Division, American Society of Civil Engineers. 86, 39-68.
- Eliasson, I. (2006) Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 30, 3, 379-392.
- Garratt, J.R. (1992) The Atmospheric Boundary Layer. Cambridge, Cambridge University Press.
- Grimmond, C.S.B., & Oke, T.R. (1999) Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 38, 1262-1292.
- Hammond, D.S., Chapman, L. & Thornes, J.E. (2009) Verification of route-based road weather forecasts. *Theor. Appl. Climatol.* DOI 10.1007/s00704-009-0189-7.
- Hanna, S.R. & Chang, J.C. (1992) Boundary layer parameterisations for applied dispersion modelling over urban areas. *Boundary Layer Meteorology*. 58, 229-259.
- Oke, T.R. (1992) Boundary Layer Climates. London, Routledge.
- Owen, S.M., MacKenzie, A.R., Bunce, R.G.H., Stewart, H.E., Donovan, R.G., Stark, G. & Hewitt, C.N. (2006) Urban land classification and its uncertainties using principal component and cluster analysis: A case study for the UK West Midlands. *Landscape and Urban Planning*, 78, 311-321.
- Sheskin, D.J. (2004) Handbook of Parametric and Nonparametric Statistical Procedures. London, Chapman & Hall.
- Vihma, T. & Savijärvi, H. (1991) On the effective roughness length for heterogeneous terrain. *Quarterly Journal of the Royal Meteorological Society*. **117**, 399-407.
- Wieringa, J. (1992) Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics. 41, 357-368.
- Wieringa, J. (1993) Representative roughness parameters for homogeneous terrain. Boundary Laver Meteorology. 63, 323-363.
- Wieringa, J., Davenport, A.G., Grimmond, C.S.B. & Oke, T.R. (2001) New Revision of Davenport Roughness Classification. Proceedings of the 3rd European & African Conference on Wind Engineering, Eindoven, Netherlands, July 2001, 8pp.