Operational Resilience in Maintenance Decision Support Systems

Wilfrid Nixon, Ph.D., P.E. IIHR Hydroscience and Engineering University of Iowa, Iowa City, IA 52242 USA

Outline

- Introduction
- Forecast Errors
- Developing System Resilience
 - In the time domain
 - In the weather domain
- Conclusions

Introduction - Economics

- Economic benefits of winter maintenance are clear
- Costs of one-day shutdowns of a transportation system have been modeled and/or measured
 - Michigan direct \$115M, derived \$144M
 - Iowa direct \$27.9M, derived \$34.8M
 - I-90 in Washington State Snoqualmie Pass closed for five days, total economic loss \$27.9M, total state tax revenue loss \$1.42M – loss rate per hour \$230,000

Introduction - Safety

- Meta-analysis shows that snow on the road strongly negatively impacts safety
 - On a per kilometer traveled basis, fatalities increase by 9%, crashes by 84%
 - US FHWA estimates 2,200 fatalities and 192,500 crashes each year due to winter weather
- Crash rate in winter is improving over time
- Appropriate winter maintenance can bring excellent improvements (e.g. Breem 83% reduction)

Introduction - Decisions

- Anti-icing gives excellent results
- BUT, must be done pro-actively (i.e. before a storm starts)
- Hence anti-icing actions may be impacted by forecasting errors
- Errors happen!
- So, how do we make decision support systems resilient in the context of the inevitable forecast errors?

Forecast Errors

- Happen!
- But, an error for a meteorologist may not be an error for a winter service provider
- Notion of operational accuracy might need to be explored
- What are key aspects of operational significance?

Operationally Critical Aspects of Winter Storms

Winter Storm Aspects of Operational Significance	Factors Impacted by an Incorrect Forecast
Storm start time	Scheduling of personnel, timing of applications, especially with respect to rush hours
Storm duration	Scheduling of personnel
Precipitation type	Appropriate chemical treatment, and in particular, appropriate pre-storm treatment
Wind speed, during and after storm	The use of liquids, either directly or as pre- wetting, especially at the end of storms if drifting is possible
Pavement temperature	Application rates, and selection of materials
Pavement temperature trends at the end of a storm	The use of pre-wet chemicals towards the end of a storm

Developing Resilience

- Resilience the ability to operate at a near-optimal level in spite of a variety of different bat may arise (during a storm)
- Not just the weather
- Equipment, per important issue
- Two particular resilience
 - The time domain
 - The weather domain

r domains) require

cher... BUT weather is an

Resilience in the Time Domain

- Impacts in three areas
 - Rush hour applications
 - Shift starting times
 - Shift switch over and scheduling (for longer storms)
- Three approaches to building resilience

Flagging Long Storms

- If a storm will last more than 8 hours then flag it as a multi-shift storm (assumes 12 hour shifts)
 - Allows time before for pre-treatment
 - Errors in start time can be accommodated (somewhat)
 - Preparation in terms of multi-shift planning can begin earlier and thus be more successful

Providing a Time Window

- Instead of "the storm will start at 3 a.m." better to have "the storm will start between 3 a.m. and 9 a.m."
- Want to have a level of probability associated with the time window, and level should be high
 - E.g. "95% chance that storm will start between..."
- Want the window to be as narrow as possible

Flag "Rush Hour Impacting" Storms

- Indicate when a storm will start at such a time that it will impact pre-storm and early-storm treatments
- Clearly will vary from location to location (e.g. in US afternoon rush hour starts at about 3 p.m.)
- Want to be able to pre-treat before rush hour begins (if at all possible) and so early application may be required
- Length and intensity of rush hours are also highly variable

Resilience in the Weather Domain

- Describe storms by determining a series of descriptive boundaries between weather conditions
- Assign different treatments to the weather conditions found on differing sides of the boundaries
- If treatment shifts significantly across any boundary, then that boundary must be carefully considered in any forecasts, since errors in that regard can have profound operational consequences

Descriptive Boundaries by Matrix

Storm Description

- Select one choice from each of the six categories
- For example: "medium snow (2 to 6 inches or 5 to 15 cm) with pavement temperatures between 25° and 32° F (-4° to 0° C) starting as snow with light winds (less than 15 mph or 25 kph) during and after the storm and the post-storm pavement temperature is cooling."
- A treatment can be assigned to each possible storm description
- Identify those "boundaries" which are operationally critical

Critical Boundaries

Conclusions

- By identifying situations where operational risks are greater, the resiliency of winter service activities can be improved
- Thinking of the forecast in terms of a time domain and a weather domain can help operationally
- Only a first step for now ...