$$
-\triangle-S-I-R-W-E-C-\triangle
$$

15th International Road Weather Conference
February 5th - 7th, 2010 in Québec City, Canada

2-D Heat Transfer Model of A Horizontal U-Tube

M. S. Islam ${ }^{1}$, A. Fujimoto ${ }^{2}$, A. Saida ${ }^{2}$ and T. Fukuhara ${ }^{2}$
${ }^{1}$ Khulna University of Engineering \& Technology, Bangladesh
${ }^{2}$ University of Fukui, Japan

Contents

1. Introduction
2. HUT Road Heating System
3. Numerical Model and Heat Transfer Equations
4. Indoor Experiments
5. Results and Discussions
6. Conclusions

Introduction

A slip accident at specific places such as intersections, bridges, tunnel mouths occurs frequently in winter. because the road surface conditions are remarkably changeable

Introduction

Road heating system has a significant requirement for reducing winter traffic accidents at the specific places

Introduction

Paying attention to the use of shallow ground heat inside the tunnel, we have been developing Horizontal U-Tube (HUT) road heating system in order to prevent road freezing at tunnel mouth.

HUT Road Heating System

Bincientee, sthallbINgrfiuidd iseatarased lasseaciarteddmitsityhe

 torthelproamditesupraatupis the HIP.

2-D Heat Transfer Model of A Horizontal U-Tube

Specific Aims

- To develop heat transfer models of HUT system.
- To examine the validity of the proposed models by indoor experiments.

Model Assumptions

1. The temperature gradient of the HUT fluid in the x direction is negligibly small in comparison with the ground temperature gradient in the y or z direction.
2. From the assumption 1), the HUT ground temperature, T_{g}, is assumed to be uniform in the x direction.
3. From the assumption 2), the heat transfer in ground is applicable in the $y-z$ two: Vertical Longitudinal

$$
\begin{aligned}
& y: \\
& e \\
& \text { e } \\
& \text { n } \\
& e
\end{aligned}
$$

Energy Balance Equations

Ground surrounding HUT
$(\rho C)_{g} \frac{\partial T_{g}}{\partial t}=\frac{\partial}{\partial y}\left(\lambda_{g} \frac{\partial T_{g}}{\partial y}\right)+\frac{\partial}{\partial z}\left(\lambda_{g} \frac{\partial T_{g}}{\partial z}\right)-\sum_{m=1}^{2} \mathrm{E}_{(\mathrm{m})} \cdot \eta_{g}$
$\mathrm{Tg} \quad$: ground temperature
$(\rho C) g$: heat capacity of ground
$\lambda \mathrm{g} \quad$: thermal conductivity of ground
$E(m)$: extracted heat flux per unit circumferencesurface area of HUT
[$m=1$: for going tube, $m=2$: for return tube]
$\eta_{g} \quad$: the ratio of the circumference-surface area of HUT to the volume of HUT ground element

Extracted Heat Flux

$E_{(m)}=\alpha\left(T_{g}-T_{w(m)}\right) \quad[m=1$ or 2]
$\alpha \quad$: heat transfer coefficient between HUT fluid and HUT ground.

Energy Balance Equations

Heat Carrier Fluid of HUT (HUT fluid)

$$
(\rho C)_{w} \frac{\partial T_{w(m)}}{\partial t}=\frac{\partial}{\partial x}\left(\lambda_{w} \frac{\partial T_{w(m)}}{\partial x}\right)-(\rho C)_{w} V \frac{\partial T_{w(m)}}{\partial x}+\sum_{m=1}^{2} E_{(m)} \cdot \eta_{p}
$$

$(\rho \mathrm{C})_{w}$: heat capacity of HUT fluid
$\lambda_{w} \quad$: thermal conductivity of HUT fluid
V : velocity of HUT fluid
Hp : ratio of circumference-surface area to volume of HUT

Indoor Experiments

Air temperature : $25^{\circ} \mathrm{C}$

2-D Heat Transfer Model of A Horizontal U-Tube

Thermo-couples position

2-D Heat Transfer Model of A Horizontal U-Tube

Experimental Conditions

Case No.	Room conditions		Flow rate$\left(\mathrm{m}^{3} / \sec \times 10^{-7}\right)$
	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	RH_{a} (\%)	
1	25	50	7.0
2			12.4
3			20.8
4			25.7
5			47.6

Longitudinal profile of HUT fluid temperature

Flow rate: $47.6 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{sec}$

Time change of HUT fluid temperature

Flow rate: $12.4 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{sec}$

Vertical ground temperature

c-c section

Soil temperature $\left({ }^{\circ} \mathrm{C}\right)$

$$
\alpha=46 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
$$

Relation between Nu and Re

Conclusions

A simplified heat transfer theory of a Horizontal UTube (HUT) is proposed and the applicability of the proposed model was discussed in comparison with experimental results using a miniature HUT

1. The relation between the HUT Nusselt number and the HUT Reynolds number is given by a power function and Nu increases with Re.
2. The indoor experimental results allowed the proposed model to reasonably predict the extracted ground heat.

Thank You

2.3 Initial \& Boundary Conditions for Indoor Examination

Initial Conditions

- Horizontal and vertical soil temperature
-Fluid temperature at the inlet of HUT

Boundary Conditions

- Room temperature $=25^{\circ} \mathrm{C}$
- Relative Humidity = 50 \%

- Time variations of the boundary soil temperatures were interpolated from the observed data obtained at an interval of 30 seconds.

Fig. 9 Boundary conditions for indoor examination

Heat Transfer Model of Horizontal U-Tube (HUT) Road Heating System

3.2 Results of Indoor Experiments

Fig. 18 Observed and calculated isothermal contours after 1.5 hours system operation (Case-5)

Horizontal ground temperature

a-a section

Heat Transfer Model of Horizontal U-Tube (HUT) Road Heating System

3.2 Results of Indoor Experiments

Case-2
Case-5

Fig. 20 Extracted heat flow with elapsed time

Heat Transfer Model of Horizontal U-Tube (HUT) Road Heating System

3.2 Results of Indoor Experiments

Case-2
Fig. 16 Model verification based on the horizontal ground temperature profile

Heat Transfer Model of Horizontal U-Tube (HUT) Road Heating System

3.2 Results of Indoor Experiments

Case-2
Fig. 15 Model verification based on the vertical ground temperature profile

Longitudinal profile of HUT fluid temperature

Distance from the inlet of HUT (m)
Flow rate: $12.4 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{sec}$

