

15th International Road Weather Conference February 5th - 7th, 2010 in Québec City, Canada

2-D Heat Transfer Model of A Horizontal U-Tube

M. S. Islam¹, <u>A. Fujimoto²</u>, A. Saida² and T. Fukuhara²

¹ Khulna University of Engineering & Technology, Bangladesh
 ² University of Fukui, Japan

- **1. Introduction**
- 2. HUT Road Heating System
- **3. Numerical Model and Heat Transfer Equations**
- **4. Indoor Experiments**
- **5. Results and Discussions**
- 6. Conclusions

Introduction

A slip accident at specific places such as intersections, bridges, tunnel mouths occurs frequently in winter. because the road surface conditions are remarkably changeable

Introduction

Road heating system has a significant requirement for reducing winter traffic accidents at the specific places

Introduction

Paying attention to the use of shallow ground heat inside the tunnel, we have been developing Horizontal U-Tube (HUT) road heating system in order to prevent road freezing at tunnel mouth.

HUT Road Heating System

Ginventee, sthellew grflund is eat araseal lass exercised downsity he extiable of heat transfor ground disheet under the stars of the s

- To develop heat transfer models of HUT system.
- To examine the validity of the proposed models by indoor experiments.

Model Assumptions

- 1. The temperature gradient of the HUT fluid in the x direction is negligibly small in comparison with the ground temperature gradient in the y or z direction.
- 2. From the assumption 1), the HUT ground temperature, T_g , is assumed to be uniform in the x direction.
- 3. From the assumption 2), the heat transfer in ground is applicable in the y-z twodimensional plane.

Energy Balance Equations

Ground surrounding HUT

$$(\rho C)_{g} \frac{\partial T_{g}}{\partial t} = \frac{\partial}{\partial y} \left(\lambda_{g} \frac{\partial T_{g}}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_{g} \frac{\partial T_{g}}{\partial z} \right) - \sum_{m=1}^{2} E_{(m)} \cdot \eta_{g}$$

- T_g : ground temperature
- $(\rho C)_g$: heat capacity of ground
- λ_g : thermal conductivity of ground
- E(m) : extracted heat flux per unit circumferencesurface area of HUT [m=1: for going tube, m= 2: for return tube]
- ηg : the ratio of the circumference-surface area of HUT to the volume of HUT ground element

Extracted Heat Flux

$$\mathsf{E}_{(\mathsf{m})} = \alpha \left(\mathsf{T}_{\mathsf{g}} - \mathsf{T}_{\mathsf{w}(\mathsf{m})} \right) \quad [\mathsf{m}=1 \text{ or } 2]$$

- α : heat transfer coefficient between HUT fluid and HUT ground.
- Tw : HUT fluid temperature

Energy Balance Equations

Heat Carrier Fluid of HUT (HUT fluid)

$$\left(\rho C\right)_{w} \frac{\partial T_{w(m)}}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_{w} \frac{\partial T_{w(m)}}{\partial x}\right) - \left(\rho C\right)_{w} V \frac{\partial T_{w(m)}}{\partial x} + \sum_{m=1}^{2} E_{(m)} \cdot \eta_{p}$$

- $(\rho C)_w$: heat capacity of HUT fluid
- λw : thermal conductivity of HUT fluid
- V : velocity of HUT fluid
- Hp : ratio of circumference-surface area to volume of HUT

Indoor Experiments

Air temperature : 25°C

Thermo-couples position

Longitudinal profile of HUT fluid temperature

Time change of HUT fluid temperature

Vertical ground temperature

Relation between Nu and Re

A simplified heat transfer theory of a Horizontal U-Tube (HUT) is proposed and the applicability of the proposed model was discussed in comparison with experimental results using a miniature HUT

- 1. The relation between the HUT Nusselt number and the HUT Reynolds number is given by a power function and Nu increases with Re.
- 2. The indoor experimental results allowed the proposed model to reasonably predict the extracted ground heat.

Thank You

Heat Transfer Model of Horizontal U-Tube (HUT) Road Heating System

2.3 Initial & Boundary Conditions for Indoor Examination

Initial Conditions

Horizontal and vertical soil temperature
Fluid temperature at the inlet of HUT

Boundary Conditions

- Room temperature = 25 °C
- Relative Humidity = 50 %
- Time variations of the boundary soil temperatures were interpolated from the observed data obtained at an interval of 30 seconds.

Fig. 9 Boundary conditions for indoor examination

A Dissertation Submitted to the University of Fukui for the Degree of Doctor of Engineering

ironmental Heat and Hydraulics Lab.

3.2 Results of Indoor Experiments

Fig. 18 Observed and calculated isothermal contours after 1.5 hours system operation (Case-5)

A Dissertation Submitted to the University of Fukui for the Degree of Doctor of Engineering

Horizontal ground temperature

Heat Transfer Model of Horizontal U-Tube (HUT) Road Heating System

3.2 Results of Indoor Experiments

Fig. 20 Extracted heat flow with elapsed time

A Dissertation Submitted to the University of Fukui for the Degree of Doctor of Engineering Environmental Heat and Hydraulics Lab.

3.2 Results of Indoor Experiments

Case-2

Fig. 16 Model verification based on the horizontal ground temperature profile

A Dissertation Submitted to the University of Fukui for the Degree of Doctor of Engineering

3.2 Results of Indoor Experiments

Fig. 15 Model verification based on the vertical ground temperature profile

A Dissertation Submitted to the University of Fukui for the Degree of Doctor of Engineering

Longitudinal profile of HUT fluid temperature

