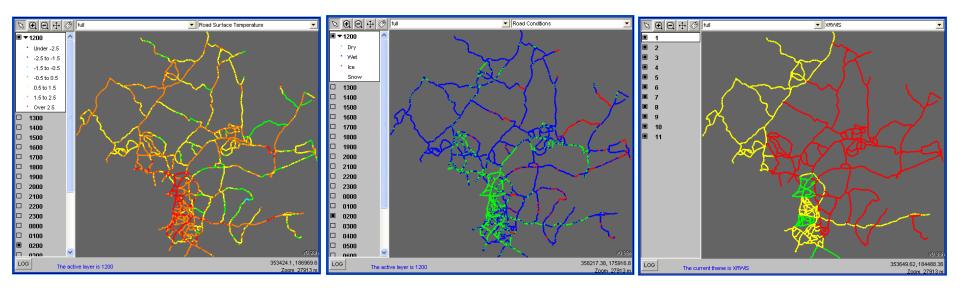
Parameterising road construction in route-based road weather models:

Can GPR provide the answer?

Dr Lee Chapman & David Hammond School of Geography, Earth and Environmental Sciences University of Birmingham, UK I.chapman@bham.ac.uk



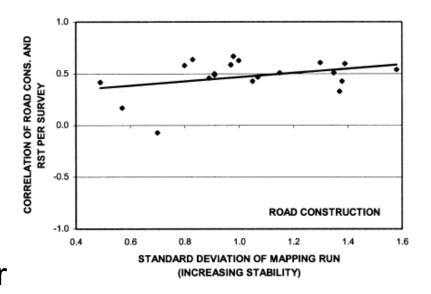
Route-based forecasting

□A new paradigm in winter road maintenance

□Spatial interpolations between 'point' outstations no longer reliant on thermal mapping

- □Instead, interpolations are made by modelling the influence of geography on the road surface
- □Potential exists to leave the warmer routes untreated or eventually utilise selective salting practices such as dynamic routing

What parameters are included?


Meteorological	Geographical Parameters	Road Parameters	
Solar radiation	Latitude	Depth of construction	
Terrestrial radiation	Altitude	Thermal conductivity	
Air temperature	Topography	Thermal diffusivity	
Cloud cover and type	Screening	Emissivity	
Wind speed	Sky-View Factor	Albedo	
Humidity / dew-point	Landuse	Traffic	
Precipitation	Topographic exposure		

- Deteorological parameters are derived from the regional weather forecast
- □Geographical parameters are surveyed using geomatic techniques (e.g. GPS, DEM, fisheye imagery)
- Road construction is problematic and is presently not surveyed.
- □This presentation looks at a technique which may enable this

Road Construction

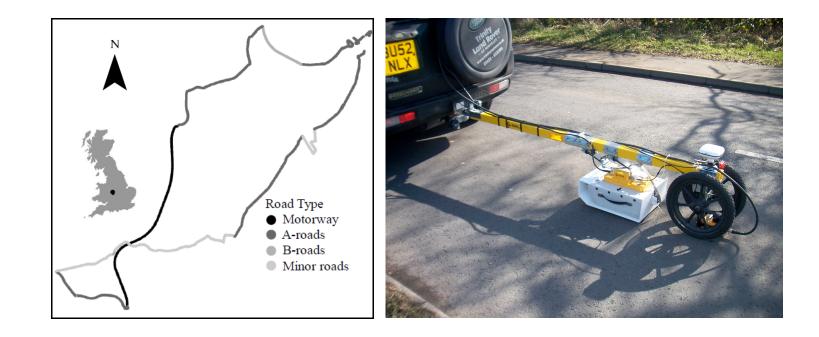
□An important factor to consider when predicting road surface temperature.

 Deep construction (e.g. main roads) are warmer and said to have a bigger thermal memory
Difficulties in surveying mean that road construction is often parameterised in a simple manner

Depth	Motorway (1)	A-Road (2)	B-Road (3)	C-Road (4)	
(cm)					
	Materials				
0 - 4.5	Asphalt	Asphalt	Asphalt	Asphalt	
4.5 – 9	Asphalt	Asphalt	Asphalt	Concrete	
9 – 18	Asphalt	Asphalt	Concrete	Concrete	
18 – 36	Concrete	Concrete	Concrete	Concrete	
36 - 72	Concrete	80% Concrete 20%	50% Concrete 50%	Subgrade/soil	
Over 72	Subgrade/soil	Subgrade/soil Subgrade/soil	Subgrade/soil Subgrade/soil	Subgrade/soil	
	Average thermal conductivity				
	3.9x10 ⁻³ cal cm ⁻¹	$3.5 \times 10^{-3} \text{ cal cm}^{-1}$	$2.9 \times 10^{-3} \text{cal cm}^{-1}$	2.1x10 ⁻³ cal cm ⁻	
	sec ⁻¹ °C	sec ⁻¹ °C	sec ⁻¹ °C	sec ⁻¹ °C	

Bridge Decks

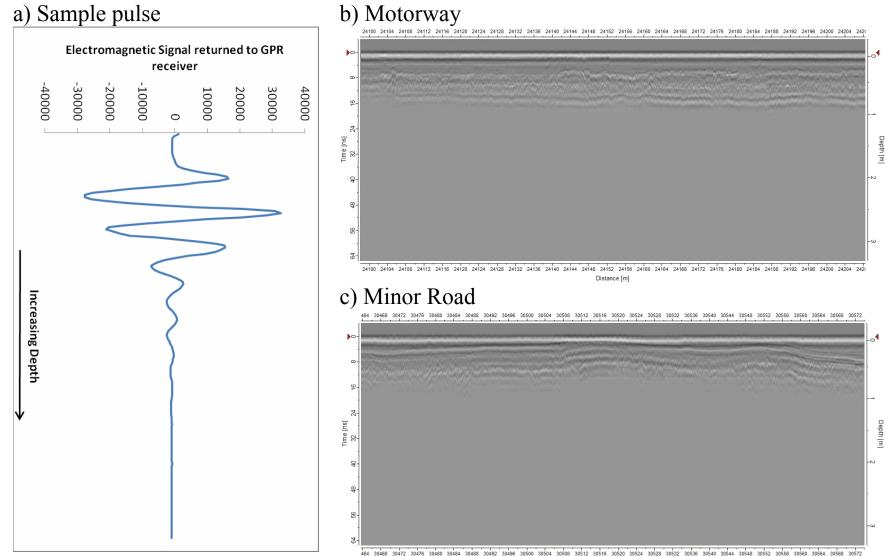
□A big problem for winter road maintenance.


- □Shallower construction = lower thermal memory.
- □Result is a thermal singularity that requires specialist treatment.

□Also difficult to survey.

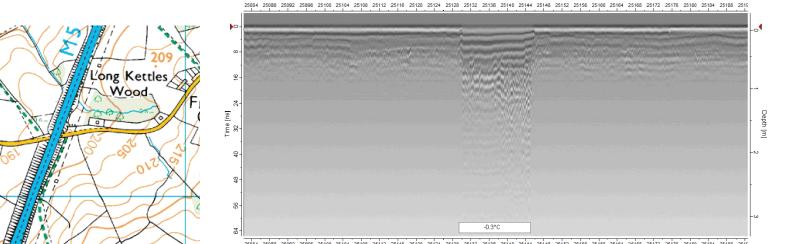
- □Included in route-based forecast models by interrogation of maps.
- □GIS can automate this to some extent, but is there a better way?

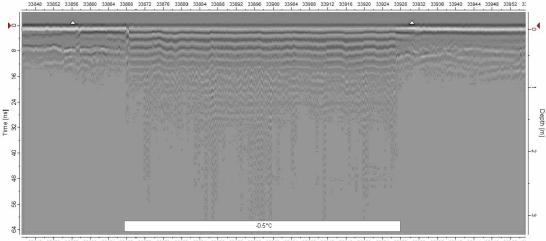
Ground Penetrating Radar


□A non-invasive geophysical technique

□Used to detect electrical discontinuities in the sub-section □An electromagnetic pulse identifies differences in electric properties below the surface.

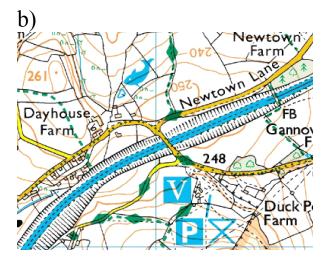
□Where a difference is identified, it can be assumed that the surface material has changed.


Radargrams

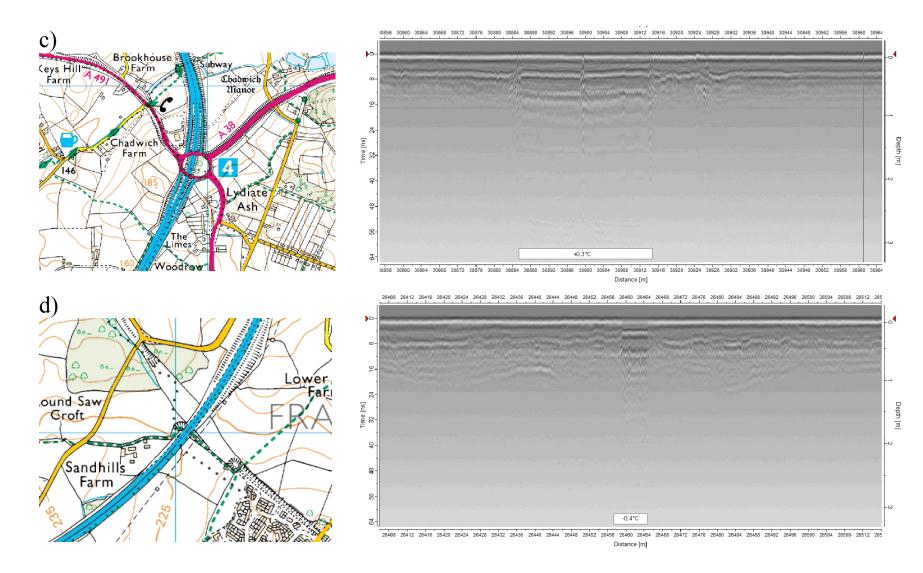

Distance [m]

UNIVERSITY OF BIRMINGHAM

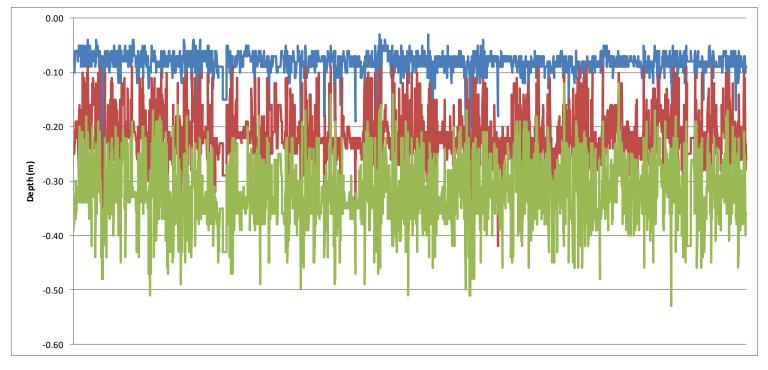
Identification of Bridge Decks



25108 25112 25116 25120 25124 25128 25132 25136 25140 25144 25148 25152 25156 25160 25164 25168 25172 25176 25180 25184 25188 2511 25084 25088 25092 25096 25100 25104 Distance [m]

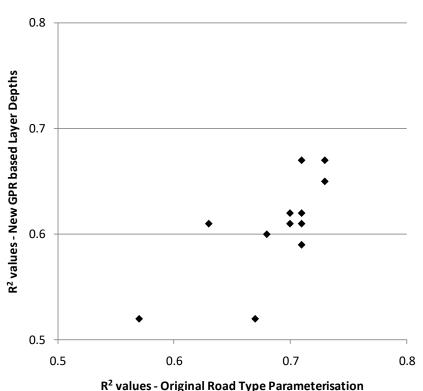

33848 33852 33856 33860 33864 33868 33872 33876 33880 33884 33882 33892 33896 33900 33904 33908 33912 33916 33920 33924 33928 33932 33936 33940 33944 33948 33952 3: Distance [m]

Identification of Bridge Decks


Variations in Road Construction

□Can GPR identify the variations in construction around the route as effectively as it can detect bridge-decks?

□An algorithm was developed in MATLAB to automatically detect the top 3 discontinuities of the road surface (i.e. down to the interface where asphalt becomes concrete).


The theory is that bigger roads with a larger thermal memory will have a deeper asphalt layer.

BIRMINGHAM

Variations in Road Construction

- □Results are disappointing.
- When the new horizons are used in the route-based forecast, there is reduced model performance.
- This could be a result of noisy data...
- □...or a result of an overlysimplistic assumption (a standard value of 6.5 was assumed for the dielectric constant)
- □ There was also limited ground truth data (i.e. road cores)

UNIVERSITY^{OF} BIRMINGHAM

Conclusions

□We think GPR still has a lot of potential!

□Very useful for objectively identifying bridge decks often missed by manual techniques.

□Produces sensible looking data pertaining to the variation of road construction across a network.

□A constant value of the dielectric constant is too simplistic: In reality it will vary around the route depending on materials, air voids and moisture.

Ground truth data (road cores) would help...

 \Box ... but are expensive to obtain

□More research needed!

