Prediction of severe driving conditions in winter

Franc Švegl and Igor Grabec

Amanova Ltd, Technology Park Ljubljana, Slovenia

SIRWEC Quebec, 5. 2. 2010

- Problem: Statistical estimation of relation between measured environmental variables and driving conditions in winter.
- Basis for treatment: Experimentally estimated probability density function PDF.
- Extraction of a relation: General regression expressed by the conditional average estimator CA.
- **Goal:** To provide data for optimization of winter roads service by intelligent control.

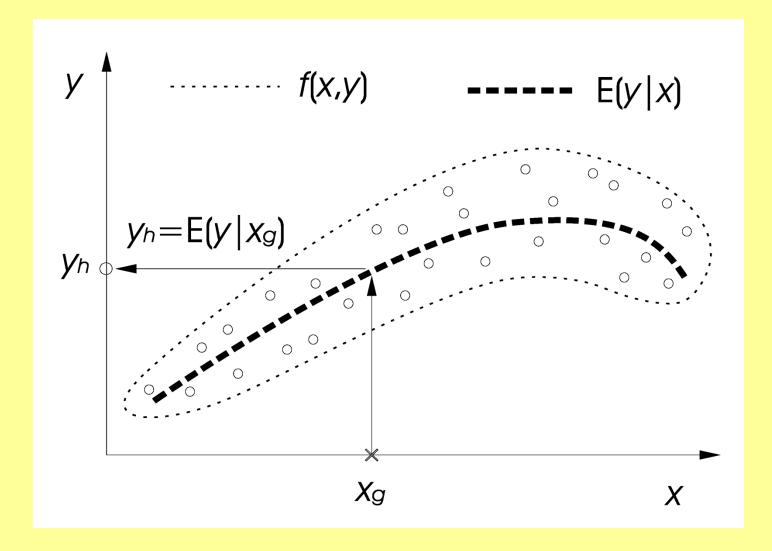
Experimental basis

x The picture can't be displayed.

- A vector variable Z = (X, Y) is utilized to join data about environment - X, and driving conditions - Y.
- Calibration by units *u* and *v* yields the joint instrument scattering function

$$w(z,w;\sigma) = w(x,u;\sigma)w(y,v;\sigma)$$

 σ is assumed to be equal for all components


Statistical basis the joint probability density - PDF

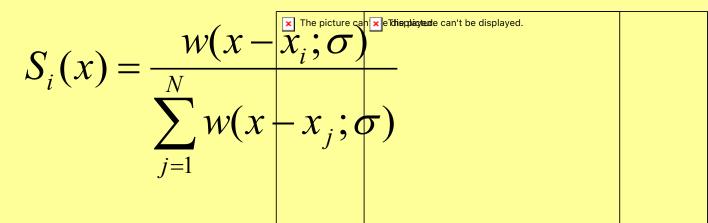
N measured joint data z_1, \ldots, z_N are given

$$f(x,y) = \frac{1}{N} \sum_{i=1}^{N} w(x,x_i;\sigma) w(y,y_i;\sigma)$$

w denotes normal probability distribution σ is the mean distance between data points

Statistical estimation of hidden driving conditions Y_h from given weather data X_g

Extraction of relation Y(x) from PDF


Optimal predictor is the conditional average:

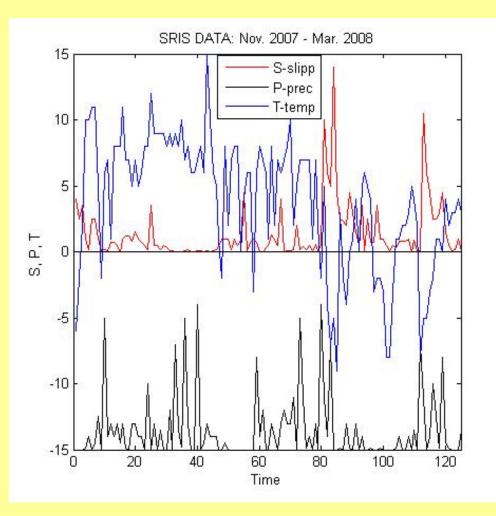
$$Y_p(x) = \mathrm{E}\left[y \,|\, x\right] = \int y \,f(y|x) \,dy$$

Expressed by data it gets the form:

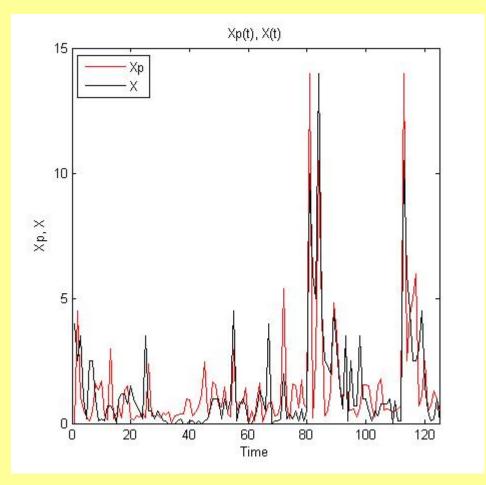
$$Y_p(x) = \frac{\sum_{i=1}^{N} y_i w(x - x_i; \sigma)}{\sum_{j=1}^{N} w(x - x_j; \sigma)} = \frac{\sum_{i=1}^{N} y_i S_i(x)}{\sum_{i=1}^{N} w(x - x_j; \sigma)}$$

Properties of $S_i(x)$

 S_i is a normalized measure of similarity between given x and stored X_i

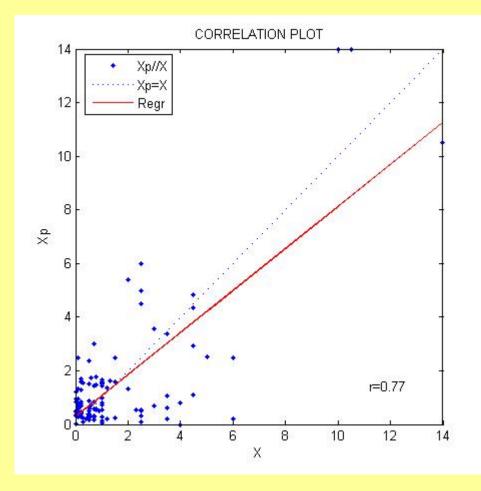

 $\sum_{i=1}^{N} S_i = 1$

 $0 \le S_i \le 1$

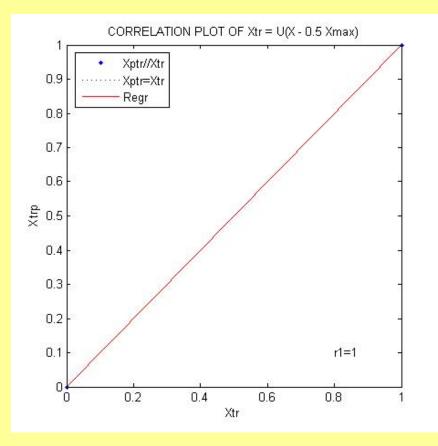

Prediction of road slipperiness from weather forecasts in Sweden

Data: S – Slipperiness P – Precipitation, T – Temperature,

Data provided by: Slippery road information system – SRIS - www.sris.nu



Predicted and original slipperiness

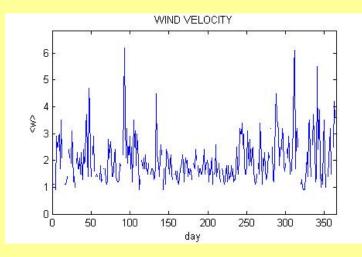

1 day ahead prediction Accounting of past data improves accuracy of prediction

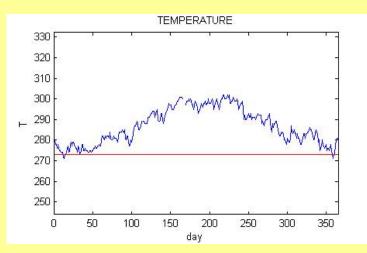
Correlation plot of X_p and actual X

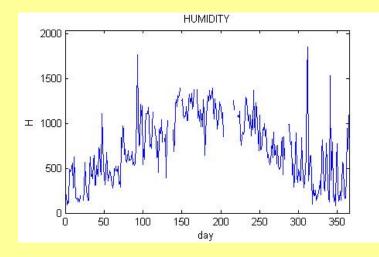
r-correlation coefficient of X_{P} and X

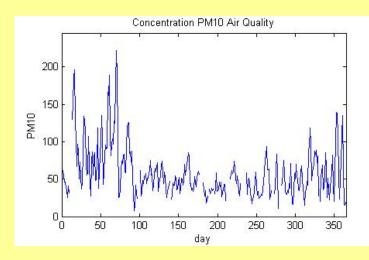
Correlation plot of transformed critical variable: Xtr = U(X - 0.5 Xmax)

r - correlation coefficient of Xtrp and Xtr

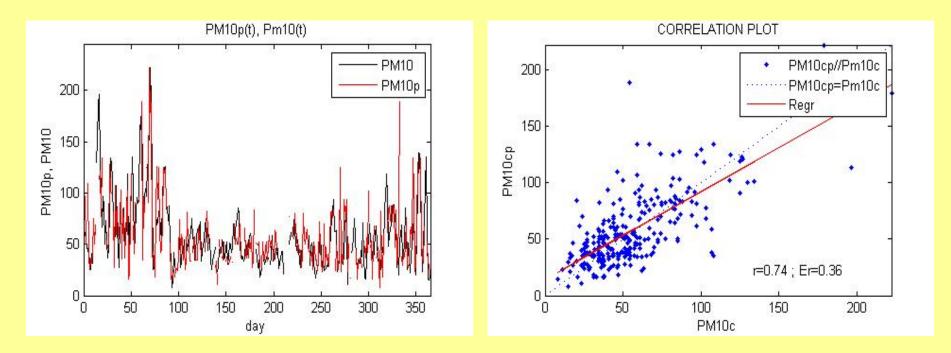

Prediction of air pollution ARPV data about *PM10*

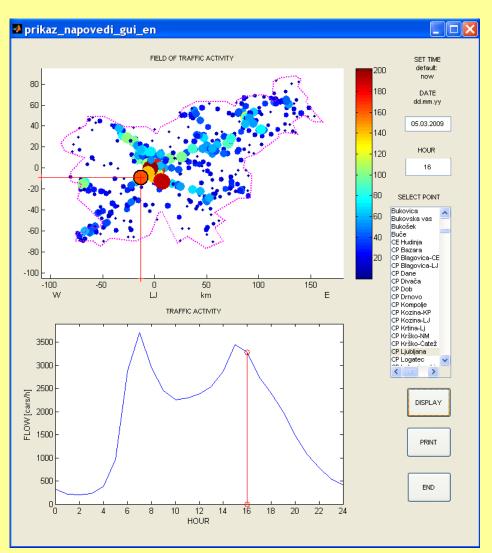

Microsoft Excel - Arpv_data																				
📴 Eile Edit Yiew Insert Format Tools Data Window Help																				
: n	💕 🔛 🖪 🖨			۴ 🛍 ۱	¥ 🗈	🔁 -	3 🖉	- 0	- 😣	Σ.	Al Zl	1 🛍 🖌	100	1%	- 🕝 .	Arial			- 10	0 -
													0 100							
: 🛄		> 🔄	33	> 🌌 '		₩¢Re	ply with	n <u>C</u> han	ges E	ind Rev	/iew	=								
	U1 -		∱x .	_			-								-		-	_		
	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	Р	Q	R	S	Т
				đ																8
		ε		Ē										_ e	Air İia	e Air				ł
		cal	_	2	Average wind direction									Ai	an M	i ag				A
		pu	eed	eed	ect				=			=	8	M10	M 4	Ave ella				1
			ds	s) sb	iji			×	ti			atio	otel	E i	E i	Arc - FI				B
		6 0	ind	ind ind	ind	_	=	pu	ili	E		ipit	e t	atio	atio	nd io				1
		s' s	e e	0.5 e v	s e	ura	rba	-p	6 19	Ē	eT	Lec	atu	St	St	St				8
		E E	rag	ŝ	rag	Hmix rural	Hmix urban	Stanford Index	rag	i.	Average T	Total precipitation	per	ij.	lity is	it i i				l l
1		Percentage of wind calm <0.5 m/s	Average wind speed	Average wind speed (without valucs≺0.5 m/s)	Ave	뿌	뿌	Stal	Average radiation	T minimum	Ave	10th	Equavalent potetial temperature	Concentration PM10 Air Quality Station in Arcella	Concentration PM10 in Air Quality Station in Mandia	Concentration PM10 in Air Quality Station. Average Mandria and Arcella				8
									-											
		_												arc	PM10_man	PM10_tipo				
	a	i i	E	E	Ε.		_	길	2	=	2	-		- e'	e'	e'			_	1
2	date	% wind calm	E N	wc_m	u_∧p	zi_r	zi_u	stan_u	rmed	tmin	tmed	ptot	thte	PM10	M	M		aa	E	66
3	1.1.2003	17	1		289,1	156	206	0,54	81	277	280	0	296	63	62	63,0		2003	1	1
4	2.1.2003	12				46	90	0,69	7	278	278	0,2	294	55		55,0		2003	1	2
5	3.1.2003	25			85,2	74	126	1,37	17	277	278	0	293	53		50,0		2003	1	3
6	4.1.2003	17		09 29	75,1 299,5	93 266	117 491	2,74	50 31	274 276	276 278	0,2 5,8	289 293	62 44		54,0 42,0		2003 2003	1	4
8	6.1.2003	8		25	326	260	464	0,05	42	276	276	0,0 8	293	44	36	42,0		2003	1	6
9	7.1.2003	0		25	338,2	245	471	0,00	19	274	275	5	287	33		29,0		2003	1	7
10	8.1.2003	0		29		271	521	0	12	274	275	0,2	285		41	41,0		2003	1	8
11	9.1.2003	0		3	334,6	285	553	0,02	28	273	274		301		32	32,0		2003	1	9
12	10.1.2003	12		17	337,2	188	284	0	51	273	274	0	289					2003	1	10
13	11.1.2003 12.1.2003	0		35	323,2 357,9	347 257	623 391	0,03	87 100	272 269	274 272	0	298 302					2003 2003	1	11 12
14	13.1.2003	37	0,7	21	57,1	136	178	2,75	83	265	272	0	311		130	130,0		2003	1	13
16	14.1.2003	62			41	119	156	1,81	84	269	273	0,2	314		152	152,0		2003	1	14
17	15.1.2003	62			14,4	125	166	5,1	80	270	273	0,2	315		188	188,0		2003	1	15
18	16.1.2003	8		11	12	91	126	4,98	46	270	274	0,2	305		196	196,0		2003	1	16
19	17.1.2003	17		11	41,7	120	163	3,54	72	272	276	0	300	400	127	127,0		2003	1	17
20 21	18.1.2003 19.1.2003	17 0		12	34,8 68,7	84 156	124 198	1,43	39 105	272 271	277 274	0,2	291 318	128 76	103 67	116,0 72,0		2003	1	18 19
21	20.1.2003	33		14	78,4	150	150	4,00	93	271	274	0,2	306	101		99,0		2003	1	20
23	21.1.2003	4		24					17	276	278	15	293	83		85,0		2003	1	21
24	22.1.2003	17	1,8	21	39,8				31	275	279	2	294	49	50	50,0		2003	1	22
25	23.1.2003	37	0,8		70	112	141	2,39	56	273	277	0,2	296	84		79,0		2003	1	23
26	24.1.2003	0		19		170	258	2,17	107	274	279	0	291	67	52	60,0		2003	1	24
27 28	25.1.2003 26.1.2003	0		31	326,3 335,9	331 268	566 365	1,22	108	277 275	279 278	0,2 0	290 288	49	37 47	43,0 47,0		2003	1	25 26
28	26.1.2003	4		12	335,9 66,4	268 192	245	3,29	111 96	275	278	0	288		47	47,0 86,0		2003	1	26
30	28.1.2003	12		14	0,4	141	240	2,63	87	273	276	0	303	148		141,0		2003	1	28
				· · ·								-							+	


Selection of variables used in modelling predictor of *PM10*


- As given variables we consider: the average wind velocity - W, humidity – H and average temperature – T.
- As hidden variables we consider concentration *P=PM10*.
- Using sample vectors Z_i = (W,H,T,P) from the data base we create statistical model of the relation P=G(W,H,T) by the CA estimator.
- By using the model we predict hidden *P* from some given data *W*,*H*,*T*.
- Here the time is used as sample index *i*.
- Agreement between predicted and really measured data is described by the correlation coefficient *r* and shown in a correlation diagram.

Variables used in modelling





Results of prediction

Graphic user interface for display of predicted traffic activity in Slovenia

- User sets time day and hour of prediction in the interval from now to the year 2015.
- From the pop-up menu an observation point is selected.
- GUI displays the field of traffic activity from the start of the selected day to the selected hour in the top graph.
- GUI displays the distribution of predicted traffic flow over the selected day in the bottom graph.
- The selected place and hour of prediction are marked in graphs.
- The prediction can be repeated with varied time and place.
- The display can be printed.

Coclusions

- Our approach to prediction of driving conditions needs no analytical model, but extracts it from experimental data.
- The same approach was successfully applied also to forecasting of traffic flows.
- The method provides information support for planning of winter roads service.
- The next step is an approch to intelligent control of winter roads service.

References

- I. Grabec, W. Sachse, *Synergetics of Measurement, Prediction and Control, Springer-Verlag*, Berlin, 1997
- I. Grabec, K. Kalcher, F. Švegl, *Modelling and Forecasting of Traffic Flow on Slovenian High-Ways*, Transport Research Arena Europe 2008", Ljubljana, SI, April 21-24, 2008
- I. Grabec, K. Kalcher, F. Švegl, Statistical Forecasting of Traffic Flow Rate, Proc. of the conf.: SIRWEC – 14th International Road Weather Conference, Prague, CZR, May 14-16, 2008
- Igor Grabec, Kurt Kalcher, Franc Švegl, Statistical forecasting of traffic activity, 9. Slovenian Congress on Traffic, Portorož, October 22-24, 2008