A Technique for Estimating Snow Transport Rate from the Mass Flux at a Given Height

Masaru MATSUZAWA and Satoshi OMIYA Civil Engineering Research Institute for Cold Region, Public Works Research Institute, Japan

Introduction

<u>Snow transport rate (Q)</u>: the mass of blowing snow particles that pass through a unit width per unit time (g m⁻¹ sec⁻¹)

Required fence heights for the snow transport severity classes.

When planning and designing blowingsnow control facilities, i is necessary to know the cumulative annual snow transport.

Classification Sn	ow transport (t/m)	Fence height (m)
Very Light	< 10	1.1
Light	10 - 20	1.5
Light-to-Moderate	20 - 40	2.0
Moderate	40 - 80	2.8
Moderately Severe	80 - 160	3.8
Severe	160 - 320	5.2
Extreme	> 320	> 5.2

Tabler (1994)

Introduction

The snow transport rate (Q) is generally estimated by using empirical equations.

- Budd et al. (1966)
- Tabler (2003)
- Takeuchi (1980)
- Kobayashi (1972)
- Matsuzawa et al. (2010)

 $logQ = 1.22 + 0.0859 V \downarrow 10$

Q=0.00428*V*↓10*1*3.8

Q=0.0029*V↓*174.16

Q=0.03*(V*↓1 −1.3*)*3

Q=0.05*V*/1.2 4

Vx: wind speed at the height of x (m)

Accurate determination of actual snow transport rate by using wind speed is difficult.

Mass flux and the snow particle counter (SPC)

Mass flux (q) : mass of the snow particles that pass through a unit area per unit time (g m⁻² sec⁻¹)

An SPC can measure

The SPC optically measures the number and size of airborne snow particles that pass between transmitter and receiver.

To clarify the relationship between the mass flux at a given height and the snow transport rate of blowing snow

Field observation overview

The mass flux of snow was measured at the heights of 0.02, 0.05, 0.07 and 0.1 m using a box-shaped net-type blowing snow trap, and at the heights of 0.1, 0.3, 0.5, 1.0 and 2.0 m using a cylindrical net-type blowing snow trap.

Cylindrical net-type blowing-snow trap

Box-shaped net-type blowing-snow trap

Meteorological data for the days of measurement

Date	Air temperature (°C)	Wind speed at the height of 1 m (m/ s)	Precipitation (mm/h)
Feb. 21, 2012	-4.9 ~ -6.5	9.2 ~ 12.9	0.0
Feb. 3, 2013	-6.3 ~ -7.8	9.7 ~ 10.5	0.0
Jan. 31, 2014	-4.9 ~ -5.9	6.1 ~ 12.5	0.0 ~ 1.2
Mar. 6, 2014	-4.8 ~ -5.9	5.6 ~ 7.7	0.0 ~ 0.6

Calculation method to determine snow transport rate from mass flux of snow

Results

The relational equation Q = kq (k is a proportional constant) was obtained for the height of 0.5 m and the height of 1.0 m

 $Q = 3.0 q_{0.5}$ $q_{0.5}$: Mass flux at 0.5m height

 $Q = 5.4 q_1$ q_1 : Mass flux at 1.0 m height

Discussion

Estimation model of snow transport rate

Takeuchi (1990)

Discussion(cont')

Estimation model of snow transport rate, 1) Q in the suspension layer: Q_{sus}

$$q(z) = N(z) \cdot V(z) \qquad \cdots (1)$$

$$Q_{sus}(z) = \int q(z)dz = \int N(z) \cdot V(z)dz \qquad \cdots (2)$$

$$N(z) = \frac{P}{W_f} + \left(N_t - \frac{P}{W_f}\right) \left(\frac{z}{z_1}\right)^{-\frac{W_b}{ku_*}}$$

•••(3) Matsuzawa and Takeuchi (2002)

$$V(z) = \frac{u_*}{k} \ln\left(\frac{z}{z_0}\right) \qquad \cdots (4)$$

where, N(z): blowing snow density, V(z): wind velocity, P: precipitation intensity, N_t : blowing snow density at reference height z_1 , w_f : falling speed of snowfall particles, w_b : falling speed of suspended particles k: Karman coefficient (0.4), u_* : friction velocity, z_0 : surface roughness ¹⁰

Discussion(cont')

1) Q in the suspension layer: Q_{sus}

$$q(z) = \frac{Pu_*}{kw} \left(\ln z - \ln z_0 \right) + \frac{a}{z_1^b} \cdot z^b \ln z - \left(\frac{a}{z_1^b} \ln z_0 \right) \cdot z^b \qquad \cdots (5)$$

where,
$$a = \left(N_t - \frac{P}{W_f}\right) \frac{u_*}{k}$$
 $b = -\frac{W_b}{ku_*}$

$$Q_{sus} = \left[\frac{Pu_{*}z}{kw_{f}}\left(\ln\frac{z}{z_{0}}-1\right) + \frac{a}{b+1}\frac{z^{b+1}}{z_{1}^{b}}\left(\ln\frac{z}{z_{0}}-\frac{1}{b+1}\right)\right]_{z_{1}}^{z_{2}} \qquad \cdots (6)$$

2) Q in the saltation layer: Q_{sal}

COLD REGION

$$Q_{sal} = 0.03(V_1 - 1.3)^3$$

Kobayashi (1972)
 $Q = Q_{sal} + Q_{sus}$
 $\cdots (8)_{11}$

Calculation

Discussion(cont')

$$Q_{sus} = \left[\frac{Pu_{*}z}{kw_{f}}\left(\ln\frac{z}{z_{0}}-1\right) + \frac{a}{b+1}\frac{z^{b+1}}{z_{1}^{b}}\left(\ln\frac{z}{z_{0}}-\frac{1}{b+1}\right)\right]_{z_{1}}^{z_{2}} \qquad \cdots (6)$$

Where, $a = \left(N_{t}-\frac{P}{w_{f}}\right)\frac{u_{*}}{k} \qquad b = -\frac{w_{b}}{ku_{*}}$
 $Q_{sal} = 0.03(V_{1} - 1.3)^{3} \qquad \cdots (7)$

The following values are assigned to equation (6).

$$z_0 = 1.5 \times 10^{-4} \text{ (m)}$$
, $w_f = 1.2 \text{ (m/s)}$, $w_b = 0.25 \text{ (m/s)}$
 $z_1 = 0.15 \text{ (m)}$, $z_2 = 5.0 \text{ (m)}$
 $u_* = 0.036 \text{ V}_{10} \text{ (m/s)}$
 $N_t = 0.021 \text{ exp} (0.401 \text{ V}_{10}) \text{ (g/m}^3)$

Cases for calculation of Q

Precipitation: 0, 1, 2 (mm/h)

Wind velocity (V₁₀): 5.7 – 16.7 (m/s)

Mass flux of snow at the height of 0.5 m ($q_{0.5}$) vs. snow transport rate Q

Summary

• The following relational equations between the snow transport rate Q and the mass flux q at a given height were obtained from field observations.

$$Q = 3.0 q_{0.5}$$
 $Q = 5.4 q_1$

Where,

 $q_{0.5}$: mass flux of blowing snow at the height of 0.5m q_1 : mass flux of blowing snow at the height of 1 m

- Additionally, a model for estimating the snow transport rate from the mass flux was derived.
- The calculated values are found to be roughly the same as the observed values.
- It is considered that the empirical equations obtained from this study can be used to estimate the snow transport rate.

Thank you for your attention!