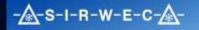


Development of Variable Speed Limits System Reflecting Pavement and Rainfall Conditions for Real-Time Urban Road in Seoul

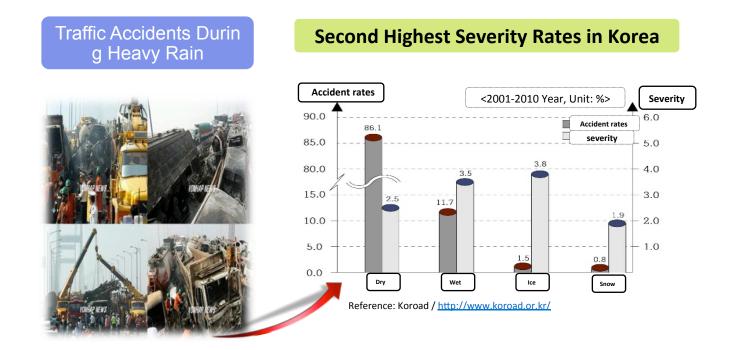

(Paper Number of SIRWEC 16-011) Section of Integrating Road Weather Information and Operations

April 29, 2016 Jonghak, Lee Senior Researcher

Email: jonghack2000@hufs.ac.kr

Contents

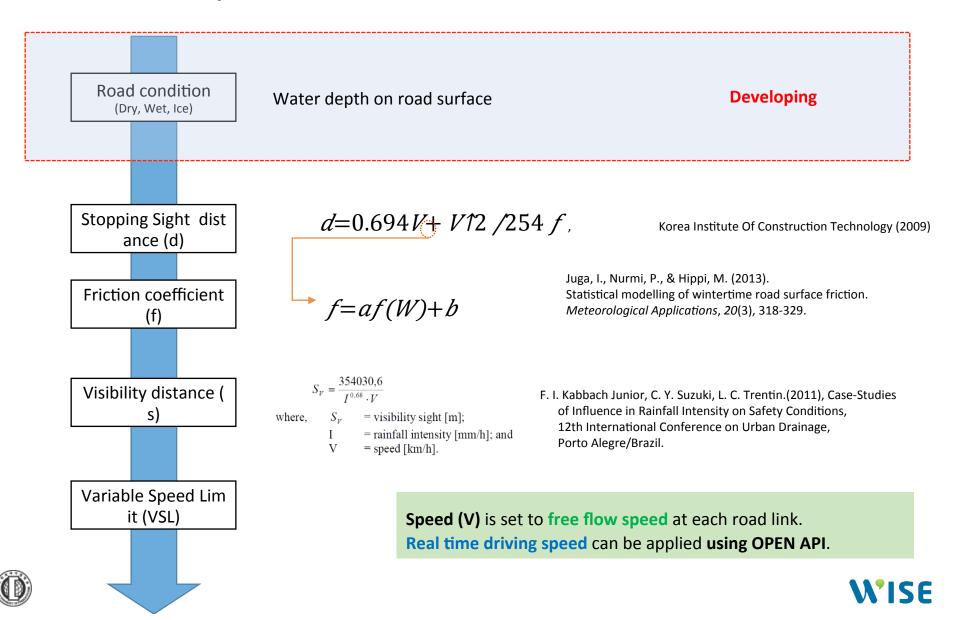
- 1. Background and Purpose
- 2. Literature Reviews
- 3. Development of VSL Algorithm
- 4. Application of Road and Weather Information
- 5. Technology Application with UTIS


6. Summary

1. Background and Purpose

- Negative effect of driver's behavior under the rainfall condition.
- Probability of high risk crashes during rainfall or after rainfall.

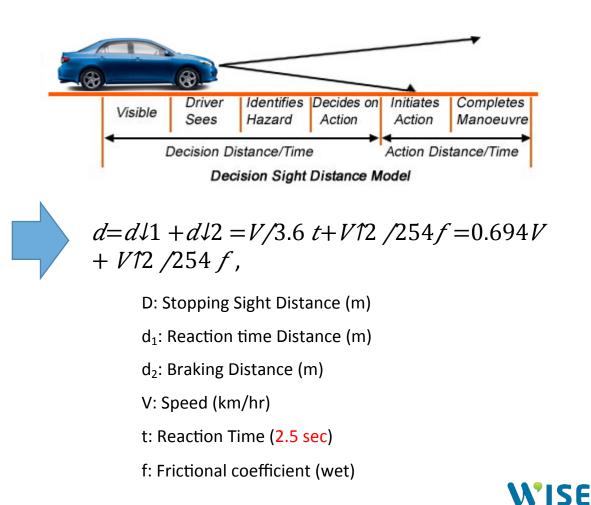
- Importance of precise rainfall information for traffic safety.
- Not directly being measured of rainfall on roads.


• Development of the methodology for the variable speed limits in real ti

me by rainfall intensity in Seoul City.

- Development of variable speed limit algorism.
- Application of Interpolation technique (IDW) for Seoul roads and 190 weather stations. * Inverse Distance Weight
- Evaluation of road weather prediction accuracy according to representative rainfall days from 190 weather stations in Seoul.
- Development of Variable Speed Limit System.

✓ Process for development of VSL



2. Literature Reviews

✓ Stopping Sight Distance

Distance traveled during the two phases of stopping a vehicle: perception-reaction tim e (PRT), and maneuver time (MT).

- Perception-reaction time
- Driver eye height
- Object height
- Vehicle operating speed
- Pavement coefficient of friction
- Deceleration rates
- Roadway grade

-A-S-I-R-W-E-C-A

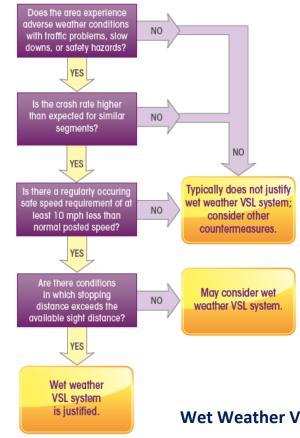
-A-S-I-R-W-E-C-A-

✓ Visibility Distance

To determine the distance of visibility during rain, the main method is exposed, w here the empirical equation shows that the visibility distance is calculated in term s of speed and storm.

$$S_{\nu} = \frac{354030.6}{I^{0.68} \cdot V}$$

where, S_{ν} = visibility sight [m];
I = rainfall intensity [mm/h]; and
V = speed [km/h].

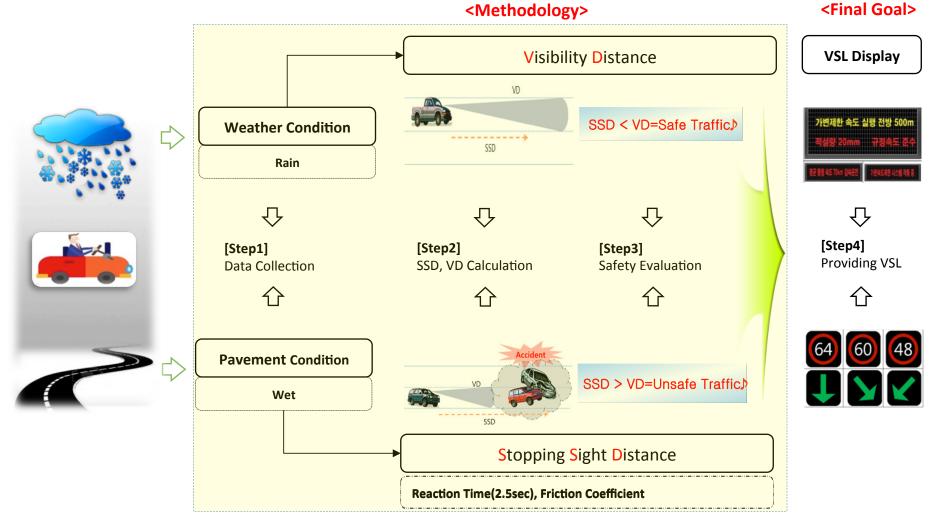

WISE

✓ Variable Speed Limit

Variable speed limits are speed limits that change based on road, traffic, and weather conditions.

Variable speed limits offer considerable promise in restoring the credibility of speed limts and improving s

afety by restricting speeds during advserse conditions. (US. Federal Highway Administration).



Wet Weather Variable Speed Limit Flowchart

3. Development of VSL Algorithm

✓ Definition of Research

-<u>A</u>-S-I-R-W-E-C-<u>A</u>-

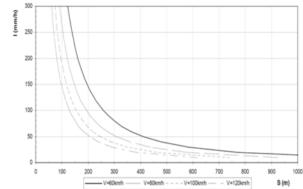
✓ Analysis

- Visibility Distance
 - Analysis Conditions
 - : Road (Tangent), Weather (Rainfall)
 - Formula

$$S_V = \frac{354030,6}{I^{0.68} \cdot V}$$

where,

$$S_{\nu}$$
 = visibility sight [m];
I = rainfall intensity [mm/h]; and
V = speed [lrm/h]


$$V = speed [km/h].$$

Reference:

- F. I. Kabbach Junior(2011), Case-Studies of Influence in Rainfall Intensity on Safety Conditions, 12th International Conference on Urban Drainage

Result -

								[unit: m]		
	Rainfall intensity (mm/h)									
Speed (km/h)	5	10	15	20	25	30	35	40		
120)	988	616	468	385	331	292	263	240		
110)	1,077	672	510	420	361	319	287	262		
100)	1,185	740	561	462	397	350	316	288		
90)	1,317	822	624	513	441	389	351	320		
80	1,481	925	702	577	496	438	394	360		
70	1,693	1,057	802	660	567	501	451	412		
60)	1,975	1,233	936	769	661	584	526	480		

- Stopping Sight Distance
 - Analysis Conditions
 - : Road (Tangent), Pavement (Wet)
 - Formula [AASHTO(2010)]

$$D = d_1 + d_2 = \frac{V}{3.6}t + \frac{V^2}{254f} = 0.694V + \frac{V^2}{254f}$$

D: Stopping Sight Distance (m)

- d₁: Reaction time Distance (m)
- d₂: Braking Distance (m)
- V: Speed (km/hr)

t: Reaction Time (2.5 sec)

f: Frictional coefficient (wet)

							[unit: m]		
Speed (km/h)	Frictional Coefficient (f)								
Speed (kii) ii)	0.2	0.25	0.3	0.35	0.4	0.45	0.5		
120)	367	310	272	245	225	209	197		
110)	315	267	235	212	195	182	172		
100)	266	227	201	182	168	157	148		
409	222	190	169	154	142	133	126		
80,	182	156	140	128	119	112	106		
70,	145	126	113	104	97	91	87		
60)	113	98	89	82	77	73	70		
50♪	84	74	68	63	59	57	54		
40	59	53	49	46	44	42	40		
30,	39	35	33	31	30	29	28		
20,	22	20	19	18	18	17	17		

- Result

Example

SSD									* VD when rainfall 30(mm/h)
							[단위: m]			[단위: m
			Fricti	onal Coef	ficient (f)				Speed (km/h)	VD
Speed (km/h)	0.2	0.25	0.3	0.35	0.4	0.45	0.5		120	292
120)	367	310	272	245	225	209	197		110)	319
110)	315	267	235	212	195	182	172		100	350
100)	266	227	201	182	168	157	148		90,	389
90♪	222	190	169	154	142	133	126		80)	438
80)	182	156	140	128	119	112	106		70)	501
70	145	126	113	104	97	91	87		60)	584
60)	113	98	89	82	77	73	70			
50)	84	74	68	63	59	57	54		50.	701
40	59	53	49	46	44	42	40		40)	876
30)	39	35	33	31	30	29	28		30)	1,168
20	22	20	19	18	18	17	17		20)	1,752
			1					l)	

* Matching work

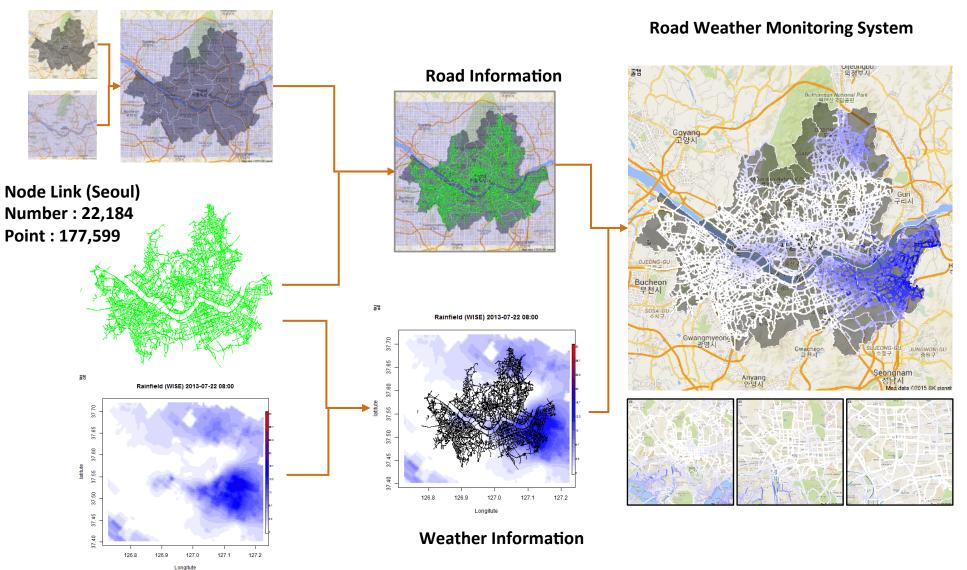
								[단위: m]
Speed	Speed (km/h)							
Speed		0.2	0.25	0.3	0.35	0.4	0.45	0.5
12	20⊅	367	310	272	245	225	209	197
11	10)	315	267	235	212	195	182	172
10	00	266	227	201	182	168	157	148
9	0.)	222	190	169	154	142	133	126
8	0)	182	156	140	128	119	112	106
7	0)	145	126	113	104	97	91	87
6	0)	113	98	89	82	77	73	70
5	0)	84	74	68	63	59	57	54
4	0,	59	53	49	46	44	42	40
3	0)	39	35	33	31	30	29	28
2	0)	22	20	19	18	18	17	17

* Calculation

HSI= SSD-VD

Traffic Condition(X1)= - Safe, HSI < 0 - Unsafe, HSI > 0

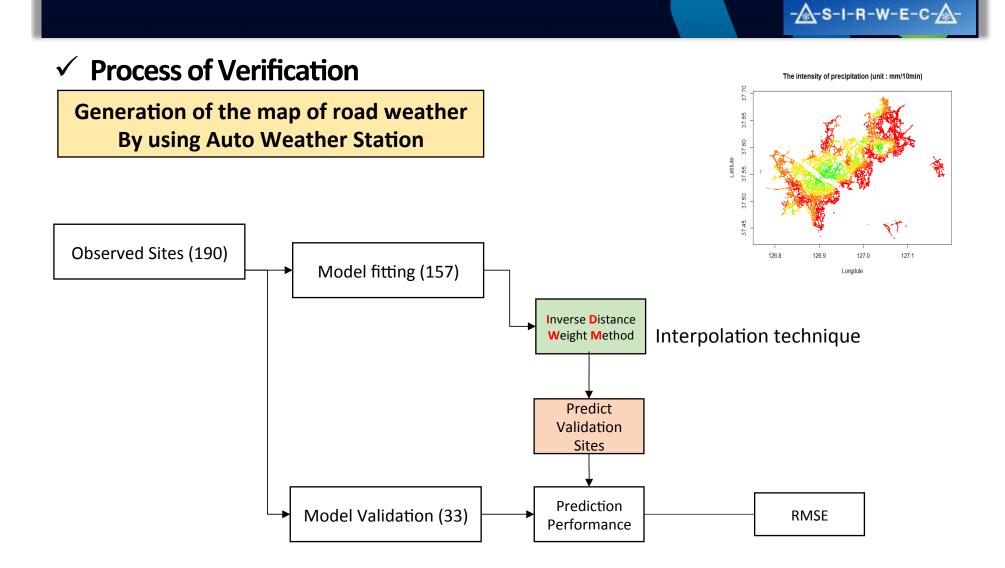
where,


HSI: Hazardous Spacing Index SSD: Stopping Sight Distance(m) VD: Visibility Distance(m)

WISE

4. Application of Road and Weather Information

-A-S-I-R-W-E-C-A-


Map (Seoul, 250m resolution)

Information of Rain in Real Time (250m resolution)

WISE

Criteria for road weather prediction

- ✓ Inverse Distance Weight method (IDW)
 - Inverse distance-based weight interpolation computes a weighted average,

 $Z(S \downarrow 0) = \sum_{i=1}^{n} \frac{1}{n} \frac{w(s \downarrow i)}{Z(s \downarrow i)} / \sum_{i=1}^{n} \frac{1}{n} \frac{w(s \downarrow i)}{Z(s \downarrow i)}$

where $Z(S \not \downarrow 0)$ is a value of a prediction location ($S \not \downarrow 0$) and $Z(S \not \downarrow i)$ is a value of

observational location ($S \downarrow i$).

The weights $W(S \neq i)$ for observations are computed according to their distance to

the interpolation location, where are consisted by **Euclidean distance** and

The predicted values never **outside the range of observed values**.

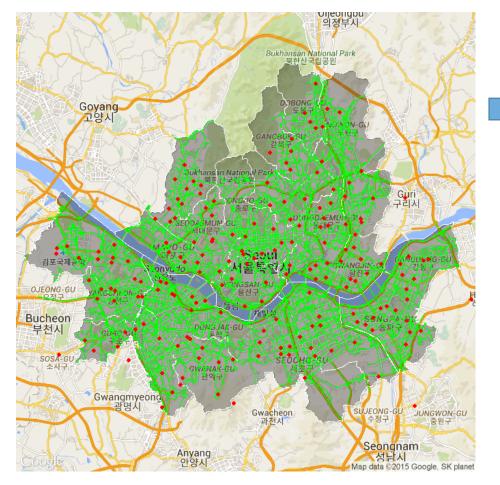
а

$$w(s\downarrow i) = |s\downarrow i - s\downarrow o|| \uparrow - x$$

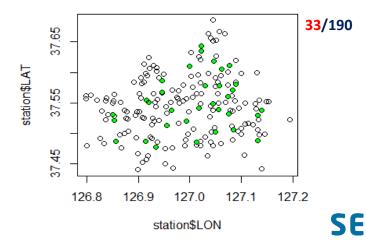
WISE

✓ Model validation criteria

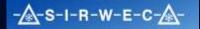
• Two measures are used for evaluating the prediction performance.


$$RMSE = \sqrt{1/N lp} \sum_{i=1}^{N} \sqrt{p} \sum_{i$$

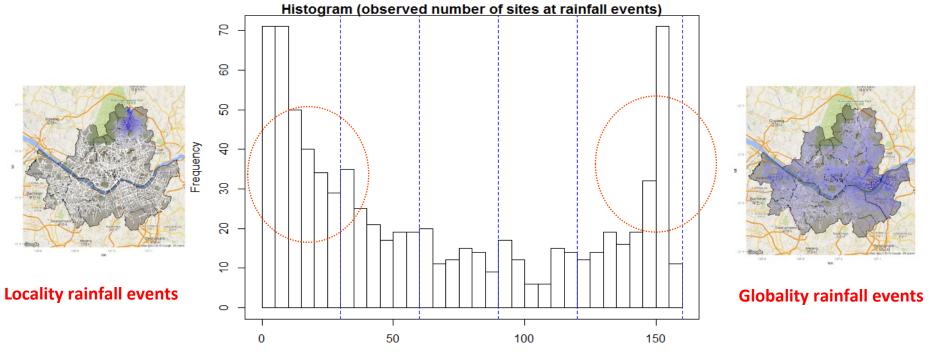
where $\mathcal{Y} \not\mid i$ is the observed values, $\mathcal{Y} \not\mid i$ is the predicted value.


- Basic statistics for verification

Site Information of Weather Observation and Road Position in Seoul



33 weather observations within 20m away from roads (17.3%) Others are 157 observations 20m away from roads (82.7%)

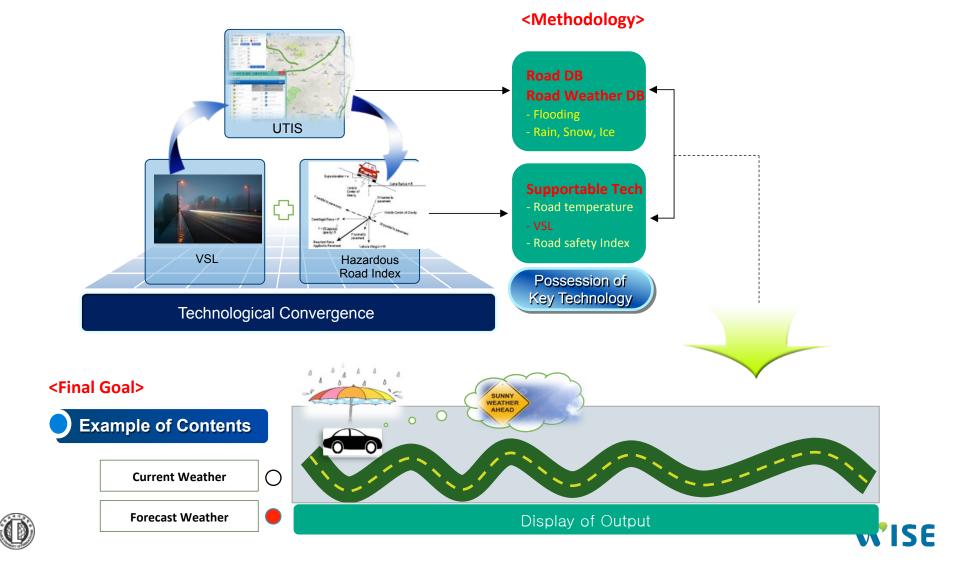


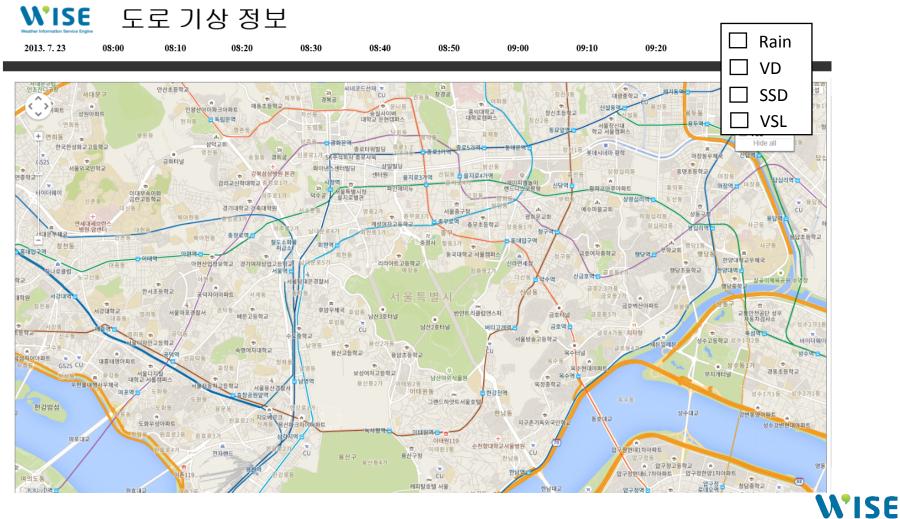
✓ Result

- Rainfall events would be affected by the ratio of rainfall observed sites.
 - Sites : 190 (SKP+KMA)
 - Time : 2013 (8 days/ 10min)
 - 8*24*6=1,152
 - No rain : 403 (34.98%)
 - Rain : 749(65.02%)

The number of rainfall observed sites (total: 157)

• Model validation results (RMSE)

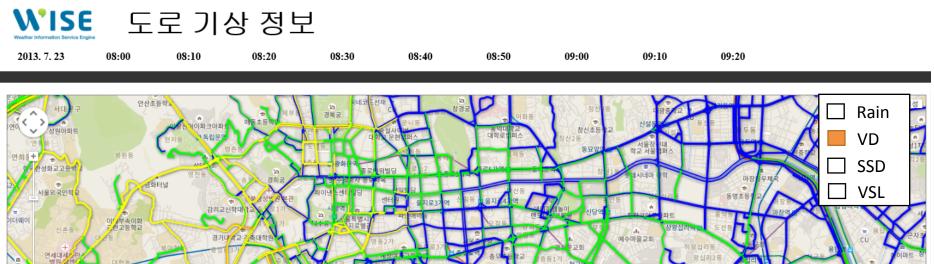

	Observed sites		RMSE				
	(model fitting)		IDW				
	1~30	mean	0.041				
Local	19.1%	sd	(0.064)				
	31~60	mean	0.155				
	38.2%	sd	(0.176)				
_	61~90	mean	0.307				
	57.3%	sd	(0.465)				
	91~120	mean	0.343				
	76.4%	sd	(0.503)				
Global	121~157	mean	0.848				
	100.0%	sd	(0.675)				
	total	mean	0.318				
		sd	(0.519)				

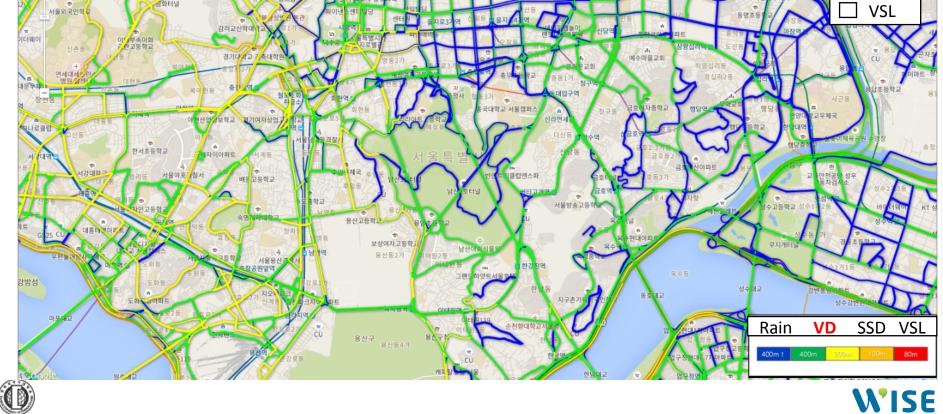

5. Technology Application with UTIS

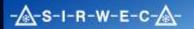
- UTIS (Urban Transit Information System) operated by Korean Police Agency
 - This system Provides all road information such as traffic, unexpected accidents and road weather.

-A-S-I-R-W-E-C-A

- ✓ Development of VSL System
- Example of tested-operation system


-<u>А</u>-S-I-R-W-E-C-<u>А</u>-


Example of rain information



WISE

• Example of visibility distance information

✓ End Users

Example of End-user product

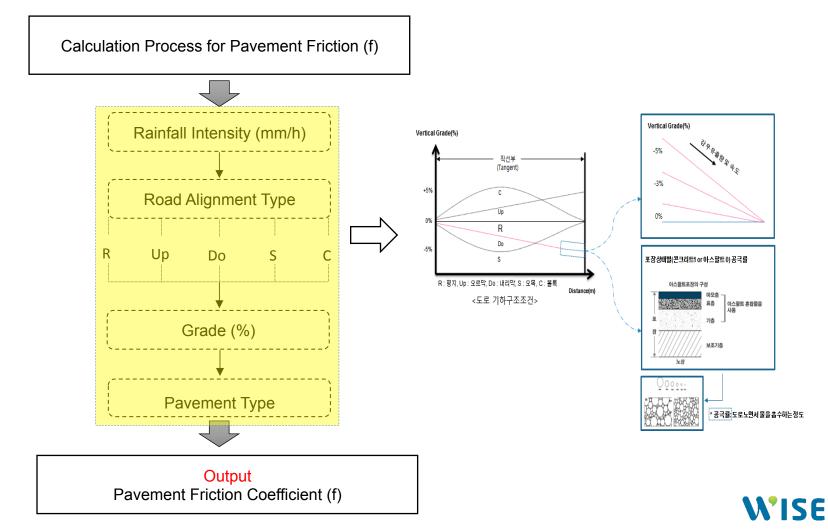
Please Drive Slowly

6. Summary

٠

- Assessment of road weather based on the distance.
 - Validation sites : 33 (within 20 meter from road)
 - Fitting sites : 157
 - Inverse distance weighting (IDW) was considered.
- **IDW** is the best model at **locality rainfall events** in the sense of RMSE.
- However, it is not at globality rainfall events.
 - VSL was calculated from rainfall intensity by considering

stopping sight distance, and visibility distance.



-A-S-I-R-W-E-C-A

-A-S-I-R-W-E-C-A-

✓ Further Study

- Process of Research

Thanks for Your attention

