SIRWEC 2016, Fort Collins, Colorado

Laboratory test of road surface condition sensors

Johan Wåhlin, Norwegian University of Science and Technology, johan.wahlin@ntnu.no

> Henrik Baad, Danish Public Roads Administration

Torgeir Vaa, Norwegian Public Roads Administration

Johan Casselgren, Luleå University of Technology Patrik Jonsson, Mid Sweden University and Combitech

Johan Edblad, Metsense

Taisto Haavasoja, Teconer

Jørgen Røien, Jørgensen instruments and Vaisala

Karl Schedler, KS-consulting and Lufft

Background - ROSTMOS project

Difficult to validate sensor data in detail in field studies

Johan Wåhlin (johan.wahlin@ntnu.no)

Tested sensors

Available data

(Road condition	Friction estimate	Water film thickness	Ice film thickness	Snow water equivalence	lce fraction
DSC211	Х	X	Х	Х	Х	
2Droad	Х					
Metroad	Х	Х				
MARWIS	Х	Х	Х			Х
RCM411	Х	Х	Х			

What we did

30 cm

Road surface:

- New black asphalt
- Grey old asphalt

Road conditions:

- Snow, several types
- Ice, different ice layers
- Water, varying film thickness

Test conditions:

- Snow and ice: -3°C
- Water: +10°C

Measurement setup

Sensing area

Johan Wåhlin (johan.wahlin@ntnu.no)

Dry road results – road condition

•
1
and the second

	Gray asphalt	Black asphalt		
DSC211	Dry			
2Droad	Dry			
Metroad	Dry	Dry		
MARWIS	Dry	Dry		
RCM411	Dry	Moist		

Wet road results – road condition

The surface state under the diagonal line come from the black asphalt plate

	0.5 mm	1 mm	2 mm	3 mm	
DSC211	Wet	Wet	Wet	Wet	
2Droad	Moist	Wet	Wet	Wet	
Metroad	Wet	Frost Moist	lce Wet	Wet	
MARWIS	Wet	Wet	Wet	Wet	
RCM411	Wet	Moist	Slush Wet+slush	Wet	

Icy road results – road condition

The surface state under the diagonal line come from the black asphalt plate

	0.5 mm	0.85 mm	2.15 mm	3.5 mm	
DSC211	lce	lce	Ice	Ice	
2Droad	Ice	Ice	Ice	Ice	
Metroad	Frost	Ice	lce Wet	Ice Wet	
MARWIS	Ice	lce	Wet Wet		
RCM411	Ice	Ice + snow Ice	Ice Ice + slush	lce	

Snowy road results – road condition

Friction – dry, wet and ice

Blue marker - ice

- Derived breaking distance spread
 - Small for dry and water
 - Huge for ice

Snowy road results – friction

- Friction values relatively insensitive to snow type
- In reality large difference between loose and compacted snow

- Sensor film thickness clearly increases with real water film thickness
- Error in range -50% to +100%, accuracy much less than resolution

- Importance of road type

	1 mm		2 mm		3 mm	
	Gray	Black	Gray	Black	Gray	Black
MARWIS	0.6	0.3	1.1	0.6	1.8	0.9
RCM411	0.9	1.8	2.1	>3	>3	>3

Effect of changing substrate:

- MARWIS measured film reduced to half
- Teconer measured film doubled

Conclusions

- Classification generally good
 - Some difficulties to differentiate between ice and water
 - Somewhat sensitive to underlying asphalt type
 - Can not distinguish different snow-types
- Friction shows a spread of ~0.2 between sensors
 - Rather good for dry and wet road
 - Problematic for ice, the spread give huge difference in breaking distance
 - Friction insensitive to snow-type

Conclusions

- Waterfilm thickness
 - Good indication of actual film thickness
 - Accuracy much less than resolution
 - Sensitive to asphalt type
- Snow of different types and density a challange

torgeir.vaa@vegvesen.no

Johan Wåhlin (johan.wahlin@ntnu.no)