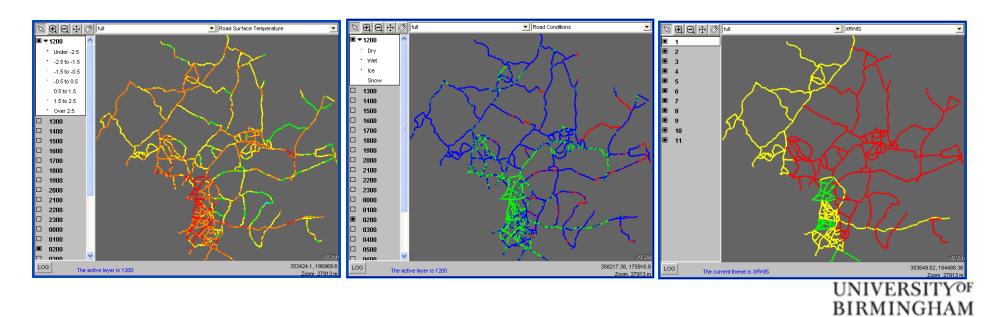


Low-cost, Road Surface Temperature sensing enabled by the Internet of Things

Prof. Lee Chapman
Professor of Climate Resilience
University of Birmingham, UK
l.chapman@bham.ac.uk



B 1986 ICE PREDICTION

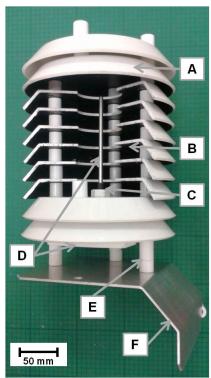
Route-based forecasting

- A new paradigm in winter road maintenance
- Spatial interpolations between 'point' outstations no longer reliant on thermal mapping
- Instead, interpolations are made by modelling the influence of geography on the road surface at 1000s of points around the road network.
- Essentially running the forecast model 1000s of times with little changes (perturbations) with respect to local geography
- Enables the engineer to turn the gritter on and off selectively and save ££££s but...

Selective Salting

- Selective salting is still not happening
- In an age of litigation, users are very wary about relying on model output to this level.
- Hence, a lack of sufficient technologies to verify / supplement route based forecasts is a big problem:
 - Thermal mapping = good spatial resolution, but poor temporal resolution
 - Outstations = good temporal resolution but very site specific
- How do you verify a route based forecast?
- Solve the verification problem and the savings and potential of all these approaches becomes unlocked:
 - Route based forecasting
 - Selective Salting
 - Dynamic Routing

The Internet of Things


- Literally means things that connect to the internet
 - Computers
 - Smart Phones
 - Curtains, lights, central heating...
 - Sensors



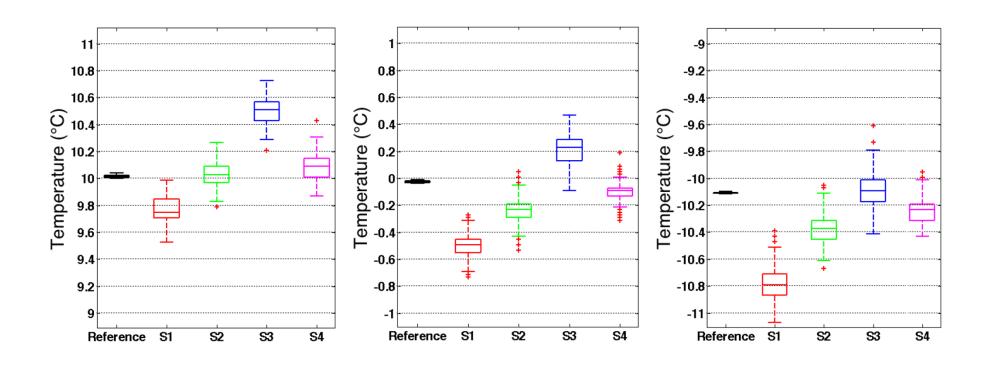
- Since 2008, these things now outnumber users online
- Lots of potential via the smart cities agenda
 - Miniaturisation of technology
 - Decreasing cost of sensor networks
- How can winter road maintenance benefit?
 - Proprietary high resolution sensor networks
 - Connected gritters
 - Connected vehicles (mobile data and vehicle data translator)

Low Cost Air Temperature Sensors

- altasense is inspired by a sensor developed by the University of Birmingham on the NERC Network of Sensors project HiTemp
- Bespoke self contained air temperature sensor was designed to produce a high resolution network across Birmingham:
 - 10kΩ Negative Temperature Coefficient Thermistor
 - Bespoke radiation shield
 - Comms provided via a wireless communication card
 - Power provided from a Lithium-Thionyl Chloride battery which last for 3 years under ideal conditions
 - Very cheap \$120!
 - Tested at UKMO calibration lab with an absolute error of ±0.22°C
- Can be deployed anywhere where there is a WiFi network (e.g. smart cities & roads)
- A good example of a low cost thing in the IoT
 - No ongoing costs for communication / power
 - Cheap to install in a large network
 - Has led to a number of succesful 'spin-off' projects

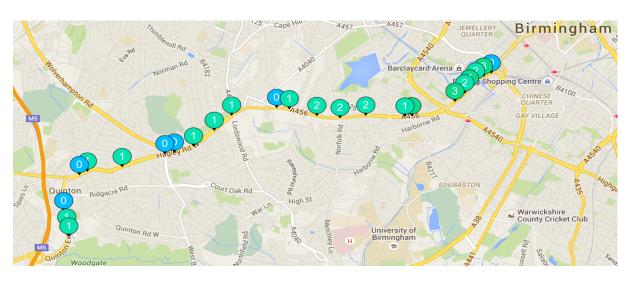
winter**sense** is an EPSRC project, cocreated with Amey, that is adapting the technology to measure road surface temperatures for gritting applications.

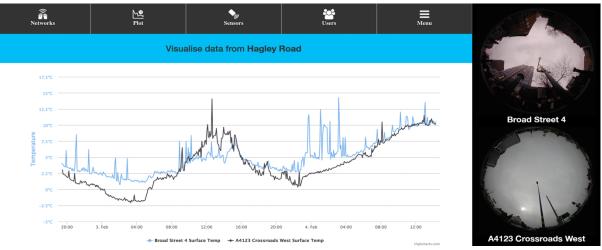
- Thermistor replaced with a low cost IR thermopile sensor.
- Sensors relay data back to central server using existing city-wide Wi-Fi installed by Amey
- High resolution network will quantify thermal variations around the road network (up to 20°C on a marginal night)
- Save money by selective salting and dynamic routing



The 'wintersensor'

- Based on the Melexis Infrared Thermopile
 - 5° Field of View
 - Range of -40 to 125°C
- Powered by 3.6 V Lithium-Thionyl Chloride battery
- Standard IEEE 802.11 b/g/n 2.4 GHz WiFi
- Cost of around \$200 per node




Is it any good?

REFERENCE (°C):	10.02	-0.02	-10.11	
S1	-0.24 (0.09)	-0.47 (0.10)	-0.67 (0.12)	
S2	0.01 (0.09)	-0.21 (0.10)	-0.27 (0.11)	
S3	0.49 (0.09)	0.24 (0.11)	0.02 (0.13)	
S4	0.07 (0.09)	-0.07 (0.08)	-0.13 (0.09)	

Field Deployment

Thoughts...

- Good measurements can be made very cheaply!
- Some challenges to overcome with IoT
 - Wireless access
 - Battery life
- Just how 'game-changing' is this?
 - High resolution and open data have never been previously available
 - New ways of measuring make old techniques redundant or is it complementary?
 - New generation of forecast models to assimilate and process the data?
 - Confidence to selective salt now on the horizon?
 - Future role of weather forecasts are we on the cusp of a return to ice detection?
- Traditional lines of instrumentation manufacturers and forecasters are becoming blurred
 - Who are the winners and losers?
- www.wintersense.com