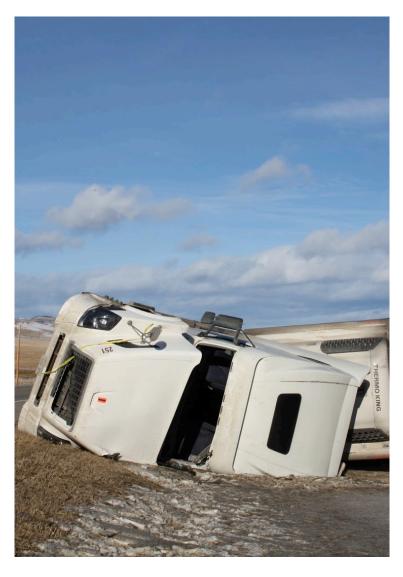
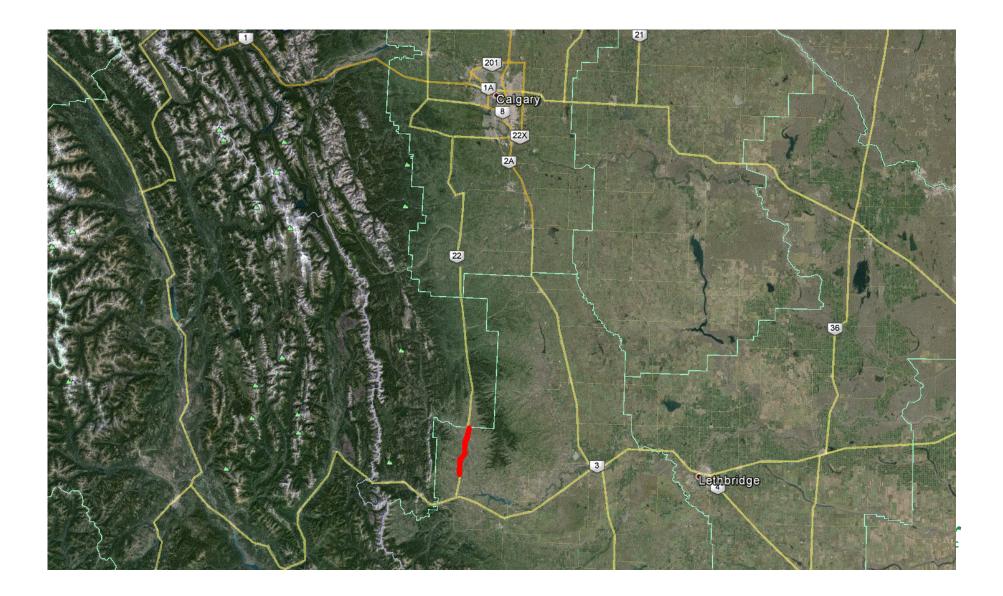


RWIS Automated Advisory System Centralized advisory system for the control of Dynamic Message Signs


Jeremy Duensing, Schneider Electric



Introduction

- Alberta Highway #22 experiences dangerous wind gusts
 - Mostly occurring between kilometres 7 and 27
 - Dubbed by locals as the "Wind Tunnel"
 - Local geography and Chinook winds are the cause
- Between November and April, motorists are at highest risk
 - Strong wind gusts blow vehicles over, even if they are parked
 - Vehicles are blown into on-coming traffic in the other lane
- Alberta Transportation wanted to take a pro-active approach
 - Try to reduce the number of wind related accidents and improve safety for the motoring public.

Alberta Transportation

Serious Accidents

- On February 11, 2011 approximately eight vehicles were blown over
 - 6 semi trailer units
 - 3 from BC, 2 from Ontario and 1 from Nevada
 - 1 pick-up with a utility trailer
 - 1 R.V. unit.
- Between September 2010 to April 2011 there were 16 similar accidents, and previous years had 4-6 accidents each
- Large cost per accident
 - Estimates range from \$25k to \$40k
 - Other DOTs estimate upwards of \$80k

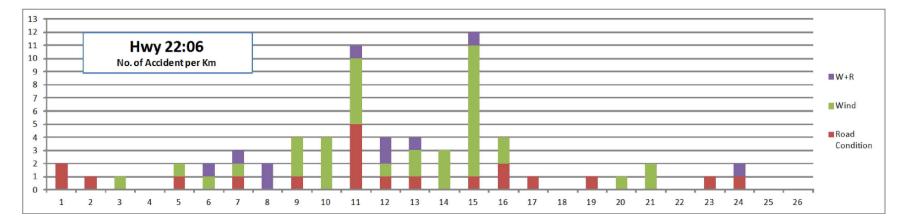
Flectric

The Existing Advisory System

- Wind speed measured at the Cowley RWIS
 - Located approximately 8 kilometres east of the #22/#3 junction.
- When the wind gusts exceed 80 km/h at Cowley RWIS, the HMC Volker Stevin would **deploy portable signs**:
 - 150 meters north on #22.
 - Junction #533 and #22 near Chain Lakes to warn the south bound traffic
 - Calls would be placed to
 - Burmis VIS, if opened, who warns all other VIS sites in southern Alberta
 - Alberta Transportation & B.C. Ministry of Transportation.

Limitations of the Existing System

- The RWIS site at Cowley doesn't accurately reflect the wind speed on highway #22.
 - Experience has shown that only moderate winds are experienced at Cowley while extreme winds are occurring in the danger zone.
 - The other RWIS north on #22 is also not representative of the danger zone.
- This procedure is completely manual, and not fast enough
 - Monitoring the wind speed
 - Someone had to monitor the wind speed continuously, or by instinct.
 - New alerting capabilities from RWIS data management system helped
 - Deploying the signs
 - By the time personnel arrive the wind event is subsided or has already claimed a couple of vehicles.
 - Poor Sign Placement
 - Only HWY #22 is signed, and nothing on Highway #3 or Highway #2..


Wind Task Group

• The Wind Warning Task Group was formed in June 2011

- With representatives from local RCMP, Landowners, Emergency Services, local MLA, District AT MCI, local gas plant owner and HMC Volker Stevin
- · Concluded with two options proposed:
 - Plan A
 - A **simplified RWIS** station near Compton
 - Site chosen to reduce cost by partnering with private business for power and communications
 - Measures only wind
 - Wind data fed into AMA (now 511 Alberta) road reports
 - Plan B
 - Additional static signage on Hwy 22 and 3
 - Signs would include a wind-sock as seen in other jurisdictions
 - In the end, elements of these were combined into the final requirements $$_{\rm Page 7}$$

Accident Study

- A study was done to analyse MVA data
 - · A clear picture started to form of where the wind and road condition accidents were occurring
 - The RWIS station was proposed near kilometre 15, also the location of the highest number of collisions
- · Research from other DOTs was reviewed
 - · Clear indications that an automated system can bring immediate benefits

Final Requirements

Initial Requirements

- Wind-only RWIS, located at km 15
 - Save cost with less sensors
- Four advisory signs with dynamic elements
 - Installed at key turn-off points
 - Power and communications TBD
- Automatic updates of signs from RWIS
 - Parameters **TBD**
 - Data smoothing
 - Signs controlled by simple close-contact relays
 - SMS alerting on activity $_{\scriptscriptstyle Page \ 10}$

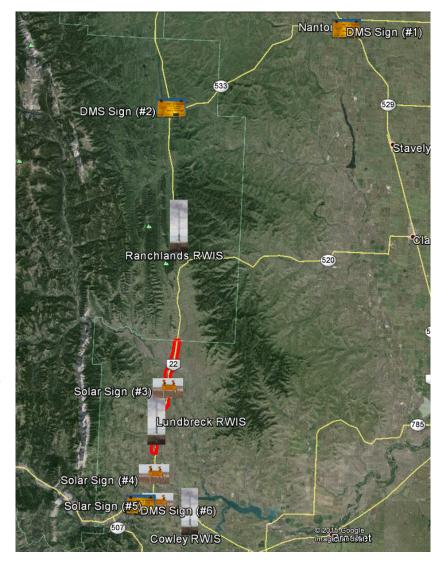
Final Requirements

- A full RWIS site at this site
 - Upgrade to most rugged wind sensor available
 - Include full set of measurements
- Six advisory signs with dynamic elements
 - Installed at key turn-off points
 - 3signs have power, 3 don't. All have cell coverage
- Automatic control from the central server
 - Wind speed display constantly updating
 - Data smoothing by way of activity hold timers
 - Some signs have full NTCIP interface, some are simple close-contact relays
 - SMS & email alerting on activity, with rate limiting Life IS Un Life IS Un

Sign Design

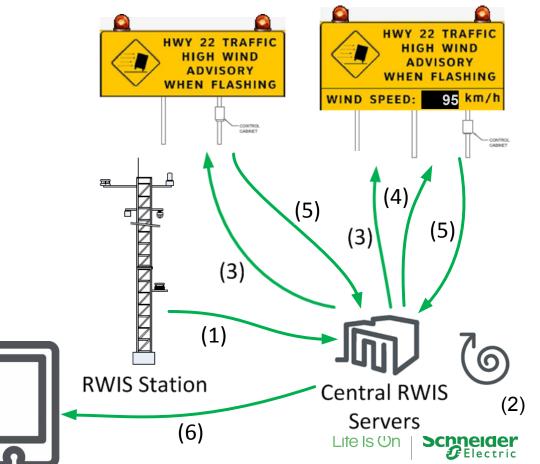
- Solar Sites
 - Flashing Beacons
 - Modbus controlled
 - Solar Powered
 - Local Override switch

- DMS Sites
 - Flashing Beacons
 - Wind Speed display in the DMS
 - NTCIP controlled
 - Utility power
 - Local Override Switch



Sign Placement

- 6 Advisory signs were installed
 - Locations prior to turn off points were chosen, to give drivers the chance to choice alternate routes.
 - Not all drivers in the February 2011 accident were local
 - Local drivers rely on tricks of the trade to know if Hwy 22 is dangerous
 - E.g A flag flying 4 miles east of the #22/#3 turn-off


• Signs were located over a 100 km stretch of roadways

· Traditional radio communication designs would not be appropriate

Overview of Operation

- 1. Wind Data from the Lundbreck RWIS retrieved by Central Server
- 2. The rule engine decides to activate the beacons.
- 3. The beacons are activated via NTCIP and Modbus
- 4. Every minute, the rule engine updates the wind speed on the DMS sign via NTCIP
- 5. As part of the regular poll cycle, sign health is brought back and analysed for faults
- 6. Text messages are sent to the appropriate parties

Rule Engine Benefits

- AT wanted to keep the door open to future research on advisory algorithms
 - Can easily implement new rules as research progresses
 - Can use inputs from others sources
 - Example: forecasted weather, other observation stations or groups of stations (static, mobile), national meteorological service alerts
 - Can control DMS assets anywhere.
 - Example: mobile DMS trailers during storms or certain seasons
- Re-useable
 - Spring 2016 implementation for bridge decks will use the same rule engine. No custom coding required.

Page 14

- All automation happens in the central system
 - Fully automated. No humans required. Works 24x7 unaided
 - Easy access to all operational reports and logs.
 - Notifications via SMS and email are easy and reliable.
- Safe
 - · Obeys the local override setting on each sign
 - Obeys remote override from 511 operations
 - Monitors itself and the signs for proper operation, and will blank all signs on major problems

Life Is 🛈

n **Schneider**

Notifications

• Groups of interest (provincial, regional, etc.)

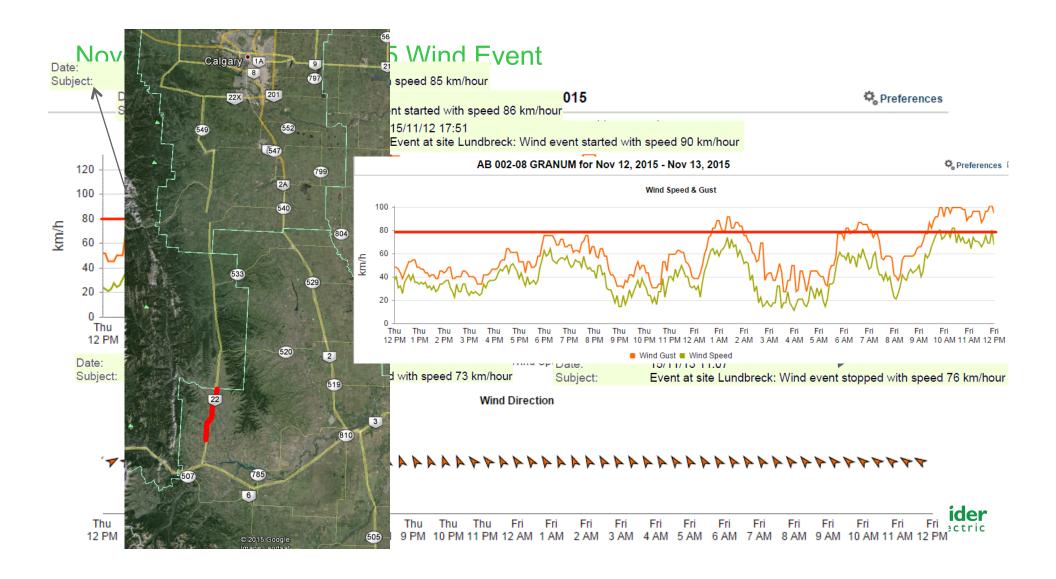
- · Users are placed in a group attached to a site
- · Only users interested in notifications for that site get the notifications

Categories (event notification, system health, etc.)

- Notifications fall into different categories, and users will only get the types of notifications they care about.
- Rate Limiting
 - Fully automated systems need to rate limit themselves so that they don't spam the users
 - Rate-limiting is per-category.

••••• TELUS 🗢 4:19 PM 7 0	∦ 100% ■■ •
Messages	Details
Event at site Lundbreck: Wind event started with speed 91 km/hour	
Wednesday 6:01 AM	
Event at site Lundbreck: Wind event stopped with speed 60 km/hour	
Thursday 3:20 AM	
Event at site Lundbreck: Wind event started with speed 82 km/hour	
Event at site Lundbreck: Wind event stopped with speed 79 km/hour	
Friday 1:41 AM	
Event at site Lundbreck:	
Text Message	Send

Current Performance


• The system (hardware + software) is fully deployed at one site

• Accuracy thus far

- Wind season came early (see following slides)
- The system has correctly controlled all 6 signs through dozens of high wind events
- The data smoothing employed has made the system responsive and without "chatter"
- Having the RWIS at the exact trouble zone has made the system more representative of the area
 - Nothing can substitute for local measurements to rely on
- · Communications are not perfect, and the system is now handling it well
 - Improvements to the communications infrastructure were required to make the system more resilient

Summary

- Weather can have large impacts on small sections of roadway
 - Accidents were statistically abnormal on a stretch of highway 22....and expensive; don't assume travellers are local
 - Despite best efforts, manual deployment of weather-driven countermeasures was not quick enough
- Local knowledge, experience and field support is very valuable
 - Years of maintenance experience is the foundation of this project and knowledge of local conditions was priceless
 - Excellent support from AT district staff and Volker Stevin
- · Getting system design and requirements finalized takes work, but can pay future benefits
 - · Get the control system people involved early in the requirements gathering
 - Be aware of who is giving initial requirements and who the end user is; be prepared for requirements to change/deepen
 - Simulators help people visualise difficult concepts; use it with a broad range of stakeholders and are invaluable for testing
 - A full FAT including all equipment for multiple days may be required
 - · Never underestimate the availability of cellular communications; over-engineer the communications component
 - A hosted central system allows flexibility in inputs and field hardware for future projects Life Is On Sc

Next Steps

- Short-term
 - Remove false alarms from communication outages

• Spring 2016 expands to include a bridge site with 3-line 20 character DMS sign

- New notification types, new rule engine logic, new sensors (visibility and pavement)
- Monitor more power supply information
- Long-term
 - Fall 2016 a second bridge site with DMS
- Future Direction(s)
 - Accident reduction and benefit analysis for 2015-2016 wind season (Nov Feb)
 - Integration into 511 Alberta?
 - Utilize additional inputs
 - Weather forecasts, National Meteorological Services alerts
 - Xband radar for dust storms

Acronyms Used

511 Alberta	Alberta road information service	Modbus	Control Systems Protocol
AMA	Alberta Motoring Association	MLA	Member of the Legislative Assembly
АТ	Alberta Transportation	MVA	Motor Vehicle Accident
BC	British Columbia	NTCIP	National Transportation Communications for ITS Protocol
DMS	Dynamic Message Sign	RCMP	Royal Canadian Mounted Police
DOT	Department of Transportation	RWIS	Road Weather Information System
EHWE/EHWSE	Extreme High Wind (Speed) Event	SAT	Site Acceptance Testing
FAT	Factory Acceptance Test	SMS	Short Message Service
нмс	Highway Maintenance Contractor	TBD	To Be Determined
HWE/HWSE	High Wind (Speed) Event	VIS	Vehicle Inspection Station
ITS	Intelligent Transportation Systems	VS	Volker Stevin
MCI	Maintenance Contract Inspector		

Thank You!

Jeremy Duensing Product Manager Schneider Electric jeremy.duensing@telventdtn.com

Jacob Hawkes Product Manager Schneider Electric jacob.Hawkes@telventdtn.com Allan Lo, P. Eng ITS and Traffic Safety Specialist Alberta Transportation allan.lo@gov.ab.ca Rick Lemire Maintenance Contract Inspector Alberta Transportation rick.lemire@gov.ab.ca

Life Is On

