Braking distance application developed on Finnish D21 project

Abstract

\section*{Introduction}

Sometimes drivers are driving too close to another car driving ahead. Many drivers have a false belief that in case of the car in front starts to brake they can react, brake and come to a stop, still leaving enough distance between the two vehicles.

The distance between cars, called as a safe following distance, should be as long as the vehicle is possible to stop without collision in case of accident or other sudden braking. Suitable safe following distance improves the fluency and safety on the roads but the local weather and road condition should be taken into account, too

Car manufacturers have developed several systems to inform drivers if the distance between cars is too short. Also, there are systems that are automatically keeping the distance between cars long enough or braking also if needed. Those systems are

called as autonomous or adaptive cruise control. However, most probably none of hose systems take into account the prevailing road condition and weather.

Road surface slipperiness has a strong influence for the length of the braking distances. The braking distance can be several times longer if the road surface is cy compared to if the road surface is dry. Also, speed has a major role for the braking distances; when the speed is doubled the braking distance becomes four times onger. The table on the right hand side presents the definition between friction coefficient and the state of the road.

The aim of the Data to Intelligence - D21 program is to develop intelligent tools and methods for managing, refining and utilizing diverse data across a variety of sectors. Within the overall program, the D21 traffic project aims to create situation awarenes for traffic circumstances in day-to-day life.

The definition between road condition and friction by Finnish Road Administration

Braking distance

The developed braking distance application informs if a car is driving too close to another car driving ahead

Local conditions, like vehicle's speed, distance between cars and slipperiness of the road surface, are taken into account in this application

The total braking distance of a vehicle depends on four
things:

- perception time
- reaction time
- vehicle reaction time vehicle braking capability

This application has been designed in D21 project, Traffic ecosystem. The application is using Noptel's measurement data (velocity of a car and the distance between cars). Noptel's measurements, as well as
friction, are stored into Noptel's database. Used road surface slipperiness (friction) can be a measurement or calculated by FMI's road weather model. The application gives a warning sign if the distance between cars is shorter than the estimated braking distance.

The application is running on Centria's vehicle where the dashboard is extended by an Android tablet which visualizes the braking distance warning. The Android program gets the needed data from the database, does the calculation and shows the warning sign if needed.

Braking distance as a function of slipperiness

Figure on the right hand side presents different braking distances as a function of car's velocity and road surface friction. Friction (μ) is a coefficient between 0 and 1 giving information about the grip between road surface and tires.

Examples for typical friction values:

- 0.8 bare and dry road surface
0.6 wet surface
- 0.25 snowy surface,
- 0.1 icy surface (with water layer on top)

The difference between various braking distances is huge when comparing different slipperiness (friction) values and speed. Braking distances don't differ very much in case of wet surface compared to bare and dry, but in case of snowy or especially icy surface the differences are dramatical. The braking distance is around 100 meters when driving $50 \mathrm{~km} / \mathrm{h}$ and as much as 400 meters when driving $100 \mathrm{~km} / \mathrm{h}$ When the speed is doubled the total braking distance becomes four times longer as the formula below performs

The braking distance $\left(\mathrm{s}_{\mathrm{b}}\right)$ can be calculated by using this formula:

Stopping distances (including reaction distance when reaction time is 1 second and braking distance) as a function of different velocities and frictions

[^0]
[^0]: $\mathrm{s}_{\mathrm{b}}=\frac{v_{0}{ }^{2}}{2 \mu g}$

